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Abstract

Nash equilibrium is often interpreted as a steady state in which each player holds the correct
expectations about the other players’ behavior and acts rationally. This paper investigates the
robustness of this interpretation when there are small costs associated with complicated forecasts.
The model consists of a two-person strategic game in which each player chooses a finite machine to
implement a strategy in an infinitely repeated 2 game with discounting. | analyze the model using
a solution concept called Nash Equilibrium with Stable Forecasts (ESF). My main results concern
the structure of equilibrium machine pairs. They provide necessary and sufficient conditions on the
form of equilibrium strategies and plays. In contrast to the “folk theorem,” these structural properties
place severe restrictions on the set of equilibrium paths and payoffs. For example, only sequences of
the one-shot Nash equilibrium can be generated by any ESF of the repeated game of chicken.
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1. Introduction

Introducing the notion of Nash equilibrium in their text book, Osborne and Rubinstein
(1994, p. 14) write: The most commonly used solution concept in game theory is that
of Nash equilibrium. This notion captures a steady state of the play of a strategic gamein
which each player holdsthe correct expectation about the other players' behavior and acts
rationally.”
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The above citation describes one of the most commonly accepted interpretations of
Nash equilibrium. It says that the equilibrium strategy of a player represents not only the
action plan this player actually takes, but also this player’s plan of action as envisioned by
the other players. According to this interpretation, players’ strategies in a Nash equilibrium
must meetwo requirements:

(1) they must be best responses to each other, and
(2) they must also represent what the other players expect each player to do.

Thus, if for some reason playeis actual strategy does not coincide with playges
expectations, then we are not at a Nash equilibrium.

This paper investigates the robustness of the above interpretation of Nash equilibrium,
when there are small costs associated with complex forecasts. The paper addresses the
following question: What is the set of strategy profiles that retain the two properties
described above, when players try to use the simplest forecasts? | argue that this set can be
surprisingly small.

In order to address the question posed above | perform the following exercise for two-
person games. | look at the Nash equilibria of a game and then ask, if complicated forecasts
are costly, will each player continue to maintain an accurate forecast of his opponent?
Suppose one of the players can find a best response to his opponent, which is rationalized
by a simpler (but possibly inaccurate) forecast. Then the original pair of strategies cannot
be considered a Nash equilibrium that is consistent with our interpretation of this solution
concept.

To help motivate the question this paper addresses, consider the following example. An
army is engaged in (the strategic form of) the infinitely repeated game of chicken. The
stage game payoffs are given in Fig. 1.

You are an intelligence officer in charge of analyzing the opponent and reporting your
forecast of his strategy to the Chief of Staff (COS). Given your forecast, the COS will
choose a best response. The COS's are replaced every period, and every new COS requests
an intelligence report on the opponent. The intelligence report you prepare must pass
through a long chain of hierarchy before arriving at the COS’s desk. That is, you pass
your report to the officer in charge of you, who edits it and then sends it to the officer in
charge of him who edits your officer’s report and so forth. Along this chain of command
there are many opportunities for your report to be distorted so that the final version of it
(which the COS receives) may be very different from your original report.

Suppose you come to the conclusion that the opponentis using a “grim trigger-strategy”:
He starts by cooperating and continues to do so as long as you cooperate as well; if
you defect at any period, he will forever defect. You conclude that the best response
is to cooperate in every period. However, you worry that a report describing the threat
might get distorted along the chain of command (for example, someone may decide to
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Fig. 1. The game of chicken.
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simplify it by writing “The opponent always cooperates”). Therefore, you consider sending

a simple report, which has a negligible chance of getting misunderstood: “The opponent
always defects.” A very simple best response to this report is to always cooperate. This is
also a best response to what you believe to be the opponent’s actual strategy. Thus, you
decide to report that the opponent always defects, expecting this report to reach the COS
without mistakes. Since the forecast you send mentions nothing about a possible defection
of his opponent, it seems natural that the COS will not decide to threaten his opponent
with a punishment. Thus, you believe the COS will respond to the report by constantly
cooperating, thus obtaining the highest payoff against his oppdnent.

The above argument suggests that a pair of grim trigger-strategies may not qualify as a
Nash equilibrium when the complexity of forecasts is taken into account. Moreover, since
trigger-strategies seem intuitively very simple, the example suggests that more complicated
strategies, which enforce constant cooperation, may also fail to qualify as Nash equilibria.

The example above introduces a central theme of this paper, which is that expectations
that can be simplified without affecting the players’ payoffs, will eventually be replaced.
This assumption is motivated by the observation that complicated descriptions of strategies
have undesirable features. For example, complicated descriptions tend to be more difficult
to understand and more difficult to remember. Furthermore, complicated descriptions may
be more costly to communicate: They take longer to explain and stand a higher chance of
being distorted along the communication channel (especially when the description must
pass through several hands until it reaches its final destination).

One may study the interaction of agents who account for the complexity of their
forecasts in the context of any model. It is particularly appropriate in the context
of an extensive game, where a forecast determines the opponent’s actions in various
circumstances. This allows the use of forecasts that are intuitively very simple, as well
as those that are intuitively very complicated. Within the set of extensive games, | study
the model of infinitely repeated R 2 symmetric games with discounting. This model
includes many well-known games which have been widely studied, such as the Prisoner’s
Dilemma, Chicken, and the Battle of the Sexes. Following the literature on complexity
considerations in repeated games (in particular, Rubinstein (1986), Abreu and Rubinstein
(1988), and Piccione (1992)), | analyze the strategic game in which players choose finite
machines to implement their strategies in the repeated game.

The use of machines allows one to model simplicity in ways which are relatively
intuitive. Simplicity is defined in this model by a partial ordering over machines. Loosely
speaking, one machine is said to be simpler than another if the behavior of the first machine
is less dependent on the actions of the opponent, or if the first machine has less changes in
its modes of behavior, or both.

| analyze the model using a solution concept called Nash Equilibrium with Stable
ForecastsESF). This solution concept says that a pair of machines i€8h if two
conditions are satisfied:

1 A natural question that may arise, is why cannot cooperation be sustained if each player reports that his
opponent always defects? If the COS of each army employs an intelligence officer who reasons as you have, then
each COS would cooperate in each period independently of his opponent’s actions. But then each intelligence
officer would want to report the truth, i.e., that the opponent is cooperating each period.
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(1) the machine of each player is a best response to his opponent’s machine, and
(2) no player has a best response to his opponent, which can be rationalized by a forecast,
which is simpler than his opponent’s machine.

This definition is meant to capture our interpretation of Nash equilibrium in a world where
players may not want to use correct forecasts which are too complicated. The definition of
ESF is also motivated by the interpretation of equilibrium strategies in extensive games as
representing not only the player’s plan of action, but also his opponents’ beliefs about him
(see Aumann (1987) and Rubinstein (1991)).

My main results concern the structure of equilibrium machine pairs. They provide
necessary and sufficient conditions on the form of equilibritnategies andplays. These
structural properties place restrictions on the set of equilibrium paths and payoffs. For
example, only sequences of the one-shot Nash equilibrium (outcomes on the off-diagonal)
can be generated by ams- of the repeated game of Chicken. | also show that there are
only two possibleESF play paths in the repeated Prisoner’s Dilemma: Either both players
defect each period, or both cooperate each period. Given the restrictions on play paths,
| characterize the set of equilibrium payoffs.

The above results should be contrasted with those for the usual repeated games for
which the Nash equilibrium set is very large in the space of strategies as well as in
the space of outcomes. In particular, the “folk theorem” (see Fudenberg and Maskin
(1986)) applies: All individually rational outcomes can be generated by some pair of Nash
equilibrium strategies. However, when the cost of forecasts enter the players’ preferences
even lexicographically, the set of equilibrium outcomes is drastically reduced.

linterpret my results as a critique of our interpretation of Nash equilibrium. The “correct
expectations” interpretation may suit games in which the formation or use of forecasts
is costless. However, as soon as players acknowledge that complicated forecasts may
be misunderstood, or as soon as we introduce a small cost for forming or maintaining
complicated forecasts, then the correct expectations interpretation places severe restrictions
on the set of equilibrium outcomes.

This paper is organized as follows. Section 2 discusses the related literature. The model
is introduced in Section 3. Section 4 provides the equilibrium characterization, and in
Section 5 | characterize the equilibrium payoffs. This is followed by concluding remarks.

2. Related literature

This paper is closely related to the literature on strategic complexity in repeated games
and in particular to the works on finite automata. Among the many works in this literature,
the papers most closely related to mine are Abreu and Rubinstein (1988) (henceforth
denoted AR) and Piccione (1992). Central to most of the works in this literature is the
assumption, which is absent in this paper, that the players’ preferences are negatively
affected by the complexity of their own strategy. The novel feature of this paper is
the assumption that each playeegpectations about his opponent are affected by the
complexity of his opponent’s strategy.

The only paper | am aware of that accounts for the complexity of describing the
opponent’s strategy is Spiegler (2001). Spiegler studies two-person extensive form games
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in which each player needs to justify (ex-post) his choice of strategy by offering a
hypothesis on what the opponent’s strategy is. The opponent’s hypothetical strategy needs
to be the simplest strategy, which is consistent with the observed history of play.

Aside from incorporating complexity considerations into the determination of a player’s
beliefs about his opponent, the two papers, Spiegler’s and the present one, are completely
different. Spiegler's goal is to propose a procedurally rational solution concept for
extensive games in which players care not only about their material payoffs, but also
on whether their choice of strategy can be justified ex-post to a third party. The solution
concept suggested by Spiegler is very much different froe@h The reader is referred
to his paper for further details.

The literature onPsychological Games (in particular, Dufwenberg and Kirchsteiger
(2000) and Geanakoplos et al. (1989)) is a related strand of literature which model games
in which the players’ preferences are affected by their beliefs (in particular, the players’
beliefs about the other players’ beliefs). However in this literature the players do not
choose their beliefs, but rather the players’ beliefs are derived in equilibrium where they
are assumed to be correct.

In Eliaz (2001) | explicitly model a situation in which advisors take into account the
possibility that their advise will not be understood. That paper considers a game between
two organizations, each consisting of a decision maker and an advisor. The decision maker
receives a forecast from his advisor to which he best responds. The advisor, who observes
the strategy of the opponent, has a probabilistic belief on the mistakes his decision maker
can make. In equilibrium, each advisor sends a forecast that maximizes the decision
maker’s expected payoffs, given the strategy of the opponent decision maker and given
the advisor’s beliefs over the mistakes his decision maker can make.

3. A mode€

Let G be a 2x 2 symmetric game. The set of actions available to each player is
A = {C, D}. We use the notation; to refer to an action taken by playérand we let
—a; denote that player's other action (i.e., for eache {C, D}, —a; € {C, D}\{a;}).
A G-outcome is a member of? and is denoted by such thata = (a1, a»). To save
on notation, we suppress subscripts whenever it is clear which player is carrying out the
action, or whenever the identity of the player is unimportant (such as when both players
choose the same action). Thus, tieoutcomes in which both players choose the same
action are(D, D) and(C, C), whereas the outcome in which playechooses the action
D while playerj choose< is (D;, C}).

Each player’s payoff is represented by a utility functionA? — 9 with u; denoting
the payoff to playeri. We let D be each player's minmax action, i.e} solves
ming, max,; uj(a1, az) = v;. We assume thak(C, C) # u(D;, Cj) and u(C;, Dj) #
u(D, D). The class of games which satisfy these conditions include many well-known
examples such as the Prisoner’s Dilemma, Chicken, and the Battle of the Sexes. Figure 2
displays examples of payoff matrices for those games.
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Fig. 2. (a) The prisoner’s dilemma. (b) Chicken. (c) The battle of the sexes.

Each playeri evaluates a sequence 6toutcomesa’) by applying the discounting
criterion to the induced sequence of utility numbéns(a’)). We refer to(1 — §) x
> §'~1u; (@) as playet’s repeated game payoff in the repeated game with discounting.

We study a static version of a repeated game in which each plagtevoses a finite
machinem; € M; to play the infinitely repeated game 6f (see Osborne and Rubinstein
(1994, pp. 140-143)) for an introduction on the use of machines as a modeling device
in repeated games). We refer to this strategic game as a “machine game” denoted by
MG($). A machine of playet is a four-tuple(Q,-,qP, fi, ©i) where Q; is a finite set of
StateS,in is the initial state,f; : Q; — A is an output function that assigns an action to
every state and; : Q; x A — Q; is the transition function that assigns a state to every
pair of a state and an action of the other player. We say that the transition from a state is
constant, if it is independent of the other player’s actions, that is; (;, C) = t; (¢;, D).

We refer to the tripl€ Q;, qP, 7;) as the automatonar chitecture. The preferences of the
players over possible pairs of machines are as follows. Pigyefers the pair of machines
(m1, m2) to the pair(m7, m5) if and only if he prefers the induced sequence of outcomes
(@ (m1,m2)); to the sequence’ (m’, m5))72,.

In the sections that follow we will often refer to states in the players’ machines that
“appear at certain periods” on the play path that is generated by those machines. For this we
shall use the following notations. Given a pair of machimgsandm we letg! denote the
state thatn; is at in therth period ofa(m1, m2). The set of states that; “passes through”
from periodr to ¢ + k will be denoted byQ; (¢, t +k); thatis,Q; (¢, +k) = {q{, el q{*k}.

3.1. Smplicity

We now define a partial ordering of machines which we interpret as the ranking of
a player’s forecasts according to their level of complexity. This ordering is assumed to
depend only on the machines’ architecture. kebe a machine with a set of stat@sand
a transition functiorr. We denote by (m) the number of distinct pairs of statesgnthat
are connected by a transition. Thatigm) equals the number of pairg, ¢) in Q such
thatg # ¢’ andg’ = t(q, a) for somea € {C, D}. For example, the machime depicted in
Fig. 3 below satisfies (m) = 1.

D C D
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Fig. 3. Machinen.
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We shall callx im) the “number of transitions from one state to a different state.”
Similarly, we lety(m) denote the number of statesdhwith the property that whem
reaches each of those states, the next state it visits depends on the other player’s action:

y(m)=|{g € 0: ©(q, ) # (g, D)}|.
Thus,y(m) measures the number of non-constant transitioms.iRor example, in Fig. 3,
y(im)=1.

Definition 1. Let m andm’ be a pair of machines. We say thatis simpler thanm’
wheneverx(m), y(m)) < (x(m’), y(m')).

The above measure of complexity is meant to capture the intuition that complex
descriptions are either more difficult to remember, or a have a higher probability of being
distorted (in particular, a complicated description that needs to pass many hands until it
reaches its final destination has a higher probability of getting distorted along the way).
The intuition for the assumption that the simplicity of a (forecast of the) machine
inversely related to/(m) is the following: The less conditionals a strategy contains, the
easier it is to remember and the less likely it is to be distorted. For example, the description
“Player j choose% only if you choosez” might be confused with “Playej chooses
unless you choose” or with “Player j chooses: only if you chooseb.” However the
statement “Playef choose$” is easier to remember and less likely to be distorted.

If x(m) < x(m’), then a forecast that describes the opponent as usisgimpler than
a forecast in which the opponent’s machinenisin the sense that the description of the
opponent’s strategy is shorter in the former forecast than in the latter. For example, suppose
you are describing some state of behavior of the opponent. If one of your actions, say
would cause the opponentto move to a different state of behavior, then you would also need
to describe that state of behavior in addition to the one you are describing now. A much
shorter description is to say that when you cho@seur opponent would remain in the
state which you have just described.

3.2. An equilibrium notion

We now define a Nash equilibrium BfG(§) which isimmune to forecast simplification.
A Nash equilibrium having this property satisfies the following: Any player who best
responds to a simpler machine than his opponent’s, necessarily reduces his payoffs in the
game.

Definition 2. A Nash equilibrium with stable forecast&%) of a machine gam#G(6)
is a pair of machinegni, m3) with the following properties: For every playgr

(1) m? is a best response t@j, and
(2) for any machine:; simpler thannj, a best respond te ; is not a best respond t@j.

The definition ofESF is motivated by the interpretation of Nash equilibriurmazsseady
state where each player best responds to an accurate forecast of his opponent. According
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to this interpretation, the Nash equilibrium strategy of playeiot only represents this
player’s best response ¢ but also represents playgs belief about playei’s strategy.

The solution concept we offer is one answer to the following question. Suppose thereis a
tendency to simplify forecasts, whenever the simplification does not reduce payoffs. Which
strategy pairs will remain a Nash equilibrium? That is, which pairs of strategies retain the
property thateach player best responds to a correct forecast of his opponent’s strategy.

If a player can obtain the maximal payoffs against his opponent by best responding to a
forecast, which is simpler than his opponent’s strategy, then the strategies of these two
players are not a Nash equilibrium according to our interpretation.

An ESF may be interpreted as a Nash equilibrium when players have lexicographic
preferences in which the simplicity of the forecast is secondary to material payoff. Such
preferences imply that a player prefers to rationalize his payoff-maximizing strategy with
the simplest forecast. Lexicographic preferences represent a conservative way of allowing
the simplicity of forecasts to enter into players’ preferences in the sense that the simplicity
of a forecast never outweighs material payoffs. Lexicographic preferences for simple
forecasts can be interpreted as the preferences of a player who receives his forecast from
someone who observes his opponents and (a) would like the player to succeed, but (b)
is concerned that complicated forecast may not be understood. Lexicographic preferences
can also be interpreted as representing evolutionary forces which favor players who use the
simplest forecasts to obtain the highest payoffs against their opponent.

It is instructive to note that there exists B&F in any repeated game in which there
exists a pure strategy Nash equilibrium in the constituent game. To see wiiy bleta
strategic game with a pure Nash equilibrivaf, a5). Letm? be a machine with a single
state in which player playsa;. The pair of machineény, m5) is a Nash equilibrium of
MG(38) for all § € [0, 1]. Since there is no simpler machine than a single-state machine, it
follows that(m}, m3) is also arESF of MG(6).

To understand hovESF can be applied to repeated games we look at two simple
examples. Each example considers a particular Nash equilibrium of the repeated Prisoner’s
Dilemma. The equilibrium in the first example is shown to satisfy the requirements for
ESF, whereas the equilibrium in the second example violates those requirements.

Example 1. Supposé&5 represents the Prisoner’s Dilemma depicted in Fig. 2. By the Nash
folk theorem there exists a discount facédre (0, 1) such that for alb > §* when both
players use the machine; (see Fig. 4), we have a Nash equilibriumM&(§) in which
the players cooperate in every period.

We claim that(m1, m>) is also arESF of MG(8) for all § > §*. To see why note that it is
optimal for a player to cooperate only if his opponent threatens him with a punishment, and

C CD

D
start G a

Fig. 4. The machine:; .
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Fig. 5. The machine:;.
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only if his opponent’s machine has at least two states (one, which “rewards” cooperation
and one which punishes defection). The only machine, which is simplemthamd has

two states, is one with constant transitions. However, given such a forecast pddyest
response is to choose every period. Therefore, any forecast, which induces player

to chooseC every period cannot be simpler than;. Note that for a discount factor
sufficiently close to onen; is also a best response;tdj, depicted in Fig. 5. However,

m'’; is not simpler tham ;.

In the next example we consider again the infinitely repeated Prisoner’s Dilemma.
We show that for any discount factor, a pair of machines, which generates a cycle of
((D, C), (C, D)) is not anESF.

Example 2. Consider the pair of machinés 1, m») depicted in Fig. 6.
For § sufficiently close to onegni, m2) is a Nash equilibrium oMG(§). However,
this pair does not constitute &8F for any discount factor. To see why, note thaf is
also a best response to a forecast, in which player 2 uses a machine with a single state of
defection.

3.3. Discussion

Before proceeding to the results, we discuss the motivation for studying our proposed
solution concept. Our motivation stems from the following interpretations of our model.

3.3.1. Acritique of Nash equilibrium

The focus of this paper is on Nash equilibrium and how it is affected when we introduce
small costs for maintaining complicated forecasts. By Nash equilibrium | mean a steady
state in which each player has a correct forecast of his opponent’s strategy and chooses a
best response to that forecast. One natural way to extend the standard definition of Nash
equilibrium to a world with costly forecasts is to add the requirement that no player should
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have an incentive to best respond to an incorrect forecast. This is the approach we take in
defining anESF.

Of course, itis also interesting to check if other solution concepts, which do not require
forecasts to be correct (like self-confirming equilibrium), are also sensitive to the standard
assumption that forecasts are costless to form. This paper takes the view that before we
investigate the many existing solution concepts, we should start with the basic notion of
Nash equilibrium.

3.3.2. Decision makerswho rely on the forecast of an expert

Decision makers often rely on experts to provide them with information about their
competition. Most experts would like to help their clients make optimal decisions.
However, it is not uncommon for experts to be concerned with the costs (time, mistakes,
etc.) associated with complex forecasts. Some examples of decision makers and experts
who fit the above description include the following: intelligence services, which provide
information to operational units; market specialists who provide top management with
information about competitors; a congressional committee, which needs to decide on a
strategy against some opponent (be it terrorists, illegal aliens, drug dealers, etc.) and
therefore summons an expert to inform them of the opponent’s behavior.

The approach we take in this paper can be interpretedeattieed form of a model that
attempts to capture the strategic interaction between players who rely on expert forecasters
with the above concerns. We view our proposed solution concept as the steady state of such
a model. This view is based on our conviction that the following must be true in a steady
state:

(1) experts have no incentive to simplify their forecasts, and
(2) experts do not provide false forecasts.

One limitation of our approach is that the full blown model in which the players and experts
interact is left in the background. Thus, an important extension of our present work would
be to explicitly model the decision makers and their expert forecasters. One step towards
this direction is taken in Eliaz (2001).

3.3.3. Complexity considerationsin repeated games

ESF is in some sense complementary to the solution concepts that have been studied
in the literature on complexity considerations in ganteS:- is the “flip side” of those
solution concepts in the following sense: Instead of assuming that a player prefers simple
strategies but is indifferent to forecasts of varying complexity, we assume that the player
prefers simple forecasts but is indifferent to strategies of varying complexity. This allows
us to isolate the effect of preferring simple forecasts from the effect of preferring simple
strategies. As we show in the next section, both approaches to complexity considerations
result in a one-to-one correspondence between states and actions on the equilibrium path;
however the two approaches imply different sets of equilibrium play paths.
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4. Characterization of the equilibria

In this section we present the main properties&&F in infinitely repeated 2 2
games. We start by describing the main features of the equilibrium machines. In particular,
the nature of the states on and off the equilibrium path is described. We conclude by
providing the conditions that are necessary and sufficient for a sequence of action pairs
to be sustainable iBSF.

The results in this section rely on the Markovian nature of each player’s optimization
problem in the machine game. Denotelyy(m 1, m») the repeated game payoff of player
if the players use the machineg andm,. Havingm} = (Q;, q?, fi, i), foreachq € Q;,
let V;(g) = max,; U;j(m}(q), m;), wherem](q) is the machine that differs from; only
in the initial stateg. For eachy € Q;, let A;(¢) be the set of solutions to the problem:

maxu;(fi(q),aj)+8V;(zi(g.a))-

Lemma 1. Player j’s machineis a best response to m if for every g € Q;, the action he
takes when player i’s machineisin state g isa member of A ;(g). Conversely, if for every
State g that m} reaches, player j takes an action in A;(q), then player j’s machineis a
best response to .

Proof. See Rubinstein (1998, p. 153)0

The first result is concerned with periods on the equilibrium path in which it is optimal
for a player to choose the best response in the2yame to his opponent’s action in those
periods. In periods that have this property a player does not need to be “threatened” in
order to induce him to take the right action. That ig, i§ a period on the equilibrium path
that has this property, then to take the optimal actionaplayer can simply believe that
his opponent’s machine would move to its next state independently of his actions.

Proposition 1 (no unnecessary punishments)(m}, m3) is an ESF of the game MG(§),
then for every period r along the equilibrium path in which player i chooses a G-best
response to his opponent’saction at 7, the transition of m’; is constant. That is,

‘L’j (q’, a,-) = Tj (qt, —ai)

Proof. Suppose there is a periodl in which playeri’s action,a*, is a G-best response
to his opponent. Assume that(q¢*, a;) # t;(¢*, —a;), whereq* is the state Ofn}’f atr*.
Let m’. denote a machine, which is derived fromi by letting the transition from state
g* be equal torj(¢*, a*) independently of playei’s actions (any state, which cannot be
reached from the initial state for any sequence of actions by plageateleted). Thusm/j

is simpler thann}’f. By Lemma la* € A;(g*). It follows thatm] is a best response t@’j,

a contradiction. O

Proposition 1 can be interpreted as saying that if it is not crucial for a player to know
that his opponent is threatening him, then it is better to ignore the threat. Describing the
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opponent’s threat will not change the player’s incentives and may only confuse the player
as the description of the opponent’s strategy becomes more complex. Thus, in periods on
the equilibrium path, in which a player need not know about a threat of punishment, his
opponent will not threaten.

However, there are situations in which a player would not choose the correct actions,
unless he knows that his opponent would punish him for not choosing correctly. The next
proposition addresses these situations. It says that if a player must know that his opponent
is threatening him with a punishment, then he should consider only the simplest effective
punishment. This implies that off-equilibrium punishments have a very simple structure.

Proposition 2 (characterization of states not on the equilibrium pdtk).(m7, m3) be an
ESF of MG(9). If thereis a player i and a state g; in m such that there exists no period ¢
that satisfies ¢/ (m}, m3) = q;, then ¢; hasthe following properties:

(1) fi(gi) = Di;
(2) 7i(gi,aj) =1i(gi, —aj) =q;.

Proof. Let t* denote a period on the equilibrium path in which play& machine is at
stateg* and playeri chooses the actiom*. Suppose there is no period on the equilibrium
path in which the state o;fzj‘ ist;(q*, —a*). By Proposition 1a* is not aG-best response

to fi(¢™). If Condition 2 is not satisfied, then a forecast, which satisfies the two conditions
of the proposition, is simpler than®. Furthermore, by Lemma 1y} is a best response to
this forecast. If only Condition 1 is not satisfied, then it is optimal for play&r choose

—a* att*, a contradiction. O

The implication of Proposition 2 for the infinitely repeated Prisoner’s Dilemma, for
example, is that any off equilibrium state must be a grim-trigger threat of constant
defection.

The previous propositions have characterized the threats and punishments in each
player’s strategy. That is, the states and transitions that are not used in equilibrium. We
now turn to discuss the properties of the equilibrium path.

Because each player's machine is finite, there is a minimal nurhbech that for some
1 >1', we haveg! = ql?’ for bothi = 1 andi = 2. Let+* be the minimal such. The
sequence of pairs of states starting in periodonsists of cycles of length — '. We
refer to this sequence as tbgelic phase; the sequence before perigds theintroductory
phase.

The next proposition shows that the set of states a player uses in the cyclic and
introductory phases are disjoint. This means that iEgf the introductory phase of each
machine consists of states that are visited only once on the equilibrium path, whereas the
cyclic stage consists of those states that appear éveeyiods on the equilibrium path,
wherel is the cycle’s length.

Proposition 3 (the equilibrium path consists of disjoint statelsgt (m7, m3) be an ESF
of MG(8) for some discount factor . Then for every player i there exists an integer
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i <t suchthatthestatesinthesequence(q{(mi,mg))?:_ll aredisointand g/ (m3, m%) =
'(ml,mz) fort>1f.

Proof. Lett; be the first period on the equilibrium path in which one of the states;6f
appears for the second time (by the finitenesmjafsuch a period exists). That is, there is

an integet; < ¢; that SatISer@ e q;’ = qj

Assume thatl A # q i +l . Let ( j' ’) = (a} ,a*) Thereforea = —a’
andr; (¢, C) #7j(q}, D). Letm denote the machine, WhICh is obtained by changing the
transmon function ofn* such that

(g} C) =7j(q}. D) =q} "
wherer is the transition function o;fn’ If as a result of this change there is a stafe
which cannot be reached from the |n|t|al staterd‘ffor any sequence of actions bythen
this state is deleted. By our definition of S|mpl|cmy is simpler thann*

Consider playeri. When playing agalnstn*; hIS best responsm* generates the
following sequence of action pairs starting at peripe- /;:

a(tj —lj,OO) = [a(tj —lj,tj — 1),a(tj,oo)],

where

a(tj —1j.tj — 1) = (a, a}), (a:j_lj-i-l’ a;j_lj-‘rl)’ s (alff—l’ a;j—l) and
a(tj, 00) = (—aj', aj), (a,{jﬂ, a;jﬂ), .
By Lemma 1, player is indifferent between playing* or —a* whenever playey is at
stateq This means that playéris indifferent between a sequence consisting of infinite
repetmons ofa(t; —I;,t; — 1) and the sequenct;, co).
Let m; denote the machine having+ [; states all of which are connected by constant
transitions such that

(1) the machine moves from itg + /; state back to its; state, and
(2) the machine carries out the first— 1 actions ofm} along the path generated by
(m7, m3) followed by infinite repetitions o#; (t; —1;,¢; — 1).

It follows thatm is a best reply to bothz’;. andm’j, a contradiction. O

The structure of Nash equilibrium in repeated games with finite machines has been
characterized by AR. They show that when each player wants to choose a best response
with the minimal number of states against his opponent, there must be a one-to-one
correspondence betwestates on the equilibrium path. This means that for every player
and every statg; on the equilibrium path, there is a unique statesuch that wheneven;
ising;, m; is in g;. It turns out that this result also holds when the equilibrium machine
of each player is the simplest machine that rationalizes the machine of the opponent.
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Proposition 4 (one-to-one correspondence between states on the equilibrium [fath).
(m3,m3) is an ESF of MG($), then there exists a period ¢* and an integer / < t* such

that for i = 1,2, ¢! (m%, m$) = ¢!~ (m%, m3) for t > r*.
Proof. See Appendix A. O

Itis important to understand that the proof of Proposition 4 is somewhat more involved
than the proof of one-to-one correspondence between states in AR. One source of difficulty
is the fact that in our model it is not necessary that all states be used on the equilibrium
path, and the players’ machines may differ in their number of states. Another source of
difficulty is related to difference between the proofs of the following claims:

Claim 1. Suppose (m1, m2) is a Nash equilibrium of MG(8) with the property that there
iS no one-to-one correspondence between states on the equilibrium path. Then a machine
with fewer statesthan m; isa best responsetom ;.

Claim 2. Suppose (m1, m2) isa Nash equilibriumof MG(8) with the property that thereis
no one-to-one correspondence between states on the equilibrium path. Then m; is a best
response to a machine with fewer statesthanm ;.

The proof of the second claim, unlike that of the first, requires us to show that by
deleting states from: ;, we have not changed the incentives of playérhat is, we need
to make sure that we do not delete any necessary threats or punishments frony jglayer
original machine.

The class of 2« 2 games that we are considering can either have two Nash equilibria,
(C,D) and (D, C) or (C,C) and (D, D), or a unigue Nash equilibrium in which the
players coordinate(C, C) or (D, D)).? Suppose we depict the payoff matrix 6f as
follows:

C D
C
D

We call the two sets of action pairg,C, C), (D, D)} and{(C, D), (D, C)}, themain
diagonal and theoff-diagonal of G, respectively. We can thus say that the Nash equilibria
of G is either one of the diagonals, or it is a singleton element in the main diagonal.
This classification of the types of Nash equilibria tiiatmay have will be useful in our
next results, which characterize the play path€8F. These results demonstrate that
accounting for the complexity of forecasts places severe restrictions on the play paths that
can be generated in equilibrium.

Proposition 5. Supposethe set of Nash equilibria of G coincideswith one of the diagonals
of this game. If (m1, m2) is an ESF of MG(8) for some discount factor &, then in every

2 This follows from our symmetry assumption, our assumption has the minmax action of each player,
and the assumption that for=1, 2, u; (C, C) # u;(D;, Cj) andu; (C;, D) # u;(D, D).
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period on the equilibrium path players play a Nash equilibrium of G. Conversely, for all
8 € [0, 1], any play path, in which players play a Nash equilibrium of G every period and
which can be generated by a pair of finite machines, is the outcome of some ESF of MG(8).

The proof of Proposition 5 is given in Appendix A. To understand the intuition for the
proof consider the game of Chicken. l(gt;, m2) be anESF of the corresponding machine
game. Suppose there exists a petiach the equilibrium path in which the outcome is not
a Nash equilibrium of5, say(C, C). To prove that this assertion is false, we construct a
machine pailm, m%) such thain’, is simpler thannz, andm/ is a best response to both
mp andm.

From the assumption that both players cho@sat ¢ it follows that each machine
must have a non-constant transition in the state that it is at in peridtierefore, we
can simplifymz, so that its output ag}, will be D and it would move to the next state
independently of the action chosen by player 1. Denote this simpler maching.lyet
m’; be a machine that is identical 1a1 except that it has a constant transitiongét It
follows thatm is a best response to baify andm’. For example, consider the machine
m depicted in Fig. 7. For a sufficiently high discount factat, m) is a Nash equilibrium
in which (C, C) is played every period. To see wiiy:, m) is not anESF, note thatm’
simpler thann, andm* is a best response to bothandm'.

Proposition 5 has striking implications for tiSF of the infinitely repeated Chicken.

If for some discount factor a pair of machines isi®F of the infinitely repeated game,
then this pair of machines can generate only combinations of the pure Nash equilibrium of
the one-shot game.

Proposition 6. Suppose (D, D) isthe unique Nash equilibriumof G. If the discount factor
8 sufficiently close to one, then there are only two possible ESF play pathsin MG(§): the
play path in which players choose (D, D) each period and the one in which they choose
(C, C) each period.

Proposition 6 implies that in thESF of the infinitely repeated Prisoner’s Dilemma
the two players must coordinate their actions, i.e., they either always defect or always
cooperate. This result is in stark contrast to the Nash folk theorem, which states that every
individually rational play path can be sustained as a Nash equilibrium.

The proof of Proposition 6 is given Appendix A. Example 2 in Section 3.2 demonstrates
the intuition for why there cannot be &%F play path that consists only of outcomes on the
off-diagonal. Here, we provide a simple example that illustrates the intuition for the result
that whenever players choog¢€, C) they continue to do so in every subsequent period.
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Let G be the Prisoner’s Dilemma and assume for simplicity th@®, D) is smaller than
the average ofi(C, D) andu(D, C). Consider the machine; depicted in Fig. 8. Fo8
sufficiently close to ondyn1, m) is a Nash equilibrium ofMG(8). However, this machine
pair is not arESF of MG(8). To see why, note thait’, is simpler thann,, andm/ is a best
response to both, andms,.

We now turn to characterize the equilibrium paths for the case in which the unique
Nash equilibrium ofG is (C, C). In stark contrast to the standard folk theorem, when the
discount factor is sufficiently close to one, the seESF play paths is reduced to a subset
of the following four sequences:

(S1) (C, C) each period,;

(S2) (D, D) in the first period, followed byC, C) in every subsequent period;
(S3) (D, D) in every odd period andC, C) in every even period,;

(S4) (D, C) each period;

(S5) (C, D) each period.

Proposition 7. Assume (C, C) is the unique Nash equilibrium of G. Let (m1, m2) be an
ESF of MG(8), where § is a discount factor sufficiently close to one.

(i) Supposeu;(C;, D;) = u;(D;, C;). Thena(my, mp) isone of the sequences (S)—(S3).
Conversely, each of the sequences (S1)—(S3) can be generated by a pair of machines
that constitutes an ESF of MG(8) for & sufficiently close to one.

(i) Suppose u; (C;, D;) < u;(D;, C;). Then a(my, m2) can be any sequence (S1)—(S5.
Conversely, each of the sequences (S1)—(S5) can be generated by a pair of machines
that constitutes an ESF of MG(8) for & sufficiently close to one.

Proposition 7 is proven in Appendix A. The intuition for the proof is similar to the
intuition underlying Propositions 5 and 6.

Given Propositions 5-7, it is interesting to compare our results with those of AR.
Although our approaches are different, both AR and we obtain a one-to-one correspon-
dence between statemd actions on the equilibrium paths. However, the setESF
play paths is different from the set obtained by AR. For example, consider the repeated
Prisoner’s Dilemma. While a play path in which players cooperate every period can be
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sustained irESF, it cannot be sustained in the equilibrium concept of AR. Consider next
the repeated Chicken. While there is BSF in which starting from some point in time,
players cooperate every period, such a play path can be obtained in the equilibrium of AR.

5. Equilibrium payoffs

Propositions 5—7 enable us to provide a characterization of the equilibrium payoffs. For
this characterization we need to introduce a few notatiﬂ@gz will denote the set oESF

payoffs for a discount factor d. Let H‘SG denote the set of all payoff pairs obtained from
some discounted sum of the Nash equilibrium payoff&afhen the discount factor is
That is,

oo

g =1 (m1, m2): m = (1-9) Z(S’ui(a’) anda’ e NE(G) for everyt}.
t=0

The next pieces of notation represent the payoff pairs associated with the sequences

(S1)—(S5) described in Proposition 7. Let(§) = (75 (8), 75 (§)) wherex?(8) denotes

the §-discounted sum of payoffs that playepbtains from a play patl§ € {S1,...S5}.

Thus,

754 8) = u;i (C, 0), 752(8) = (1 — 8)u(D, D) + su(C, C),
u(D, D) + 8u(C, C)
145

Finally, to denote theESF payoffs whenNE(G) = {(D, D)} we use the notations
7PP(8) =u;(D, D) andx £ (8) = n51(5).

753) = , 7548) =ui(D, ©), 78%(8) = ui (C, D).

Proposition 8. Let (m1, m2) bean ESF of MG(8) for § sufficiently close to one.

(i) Ifthe Nash equilibria of G lie on oneof its diagonals, then [T = ITZ.

.....

.....

(iv) I1f NE(G) = {(D, D)}, then [T = {7 PP (8), €€ (5)}.

Proof. Follows directly from Propositions 5-7.0

6. Concluding remarks

This paper should be viewed as a critique of the commonly accepted interpretation
of Nash equilibrium as a steady state in which players best respond to correct forecasts
about their opponents. The criticism which is raised in this paper is the following: When
the players’ preferences are affected by their beliefs about others, then the requirement
for correct beliefs places severe restrictions on the set of equilibrium outcomes. Thus,
when we enrich the standard framework by allowing expectations to enter into the players’
preferences, then we can either look for alternative interpretations of Nash equilibria, or
look for alternative solution concepts.
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Appendix A

Proof of Proposition 4. Let (im1, m2) be anESF of MG(8) for some discount factat. We begin by introducing
a few notations. Lef; denote the first period on the equilibrium path in which one of the states appears for
the second time. That is, lgt be the minimal time for which there is a playieand a period; < ¢ such that

q,’" = q:i . We say thatn; begins its cyclic phase at. We refer to the difference — ¢ as the “length of the
cycle” and denote it by;.

Assume there is no one-to-one correspondence between states along the path that is generateeh by
Given Proposition 3, this assumption has two possible implications:

(1) Either the two machines enter their cyclic phases at different periods{i£4;), or
(2) the two machines enter their cyclic phases at the same time, but the length of their cycles;d#fey but
I1 #12).

We consider each of these two cases separately.
Case 1. m; enters its cyclic phase befone;: 1 <17.

Let+’ denote the minimal time in which

(1) bothm; andm; are in the cyclic phase of the equilibrium path, and
(2) m; is in the first state of its cyclic phase, (stafé).

Case 1 corresponds to the case in which .

Constructm; as follows: LetS C Q; be a subset of states i@;\Q; (17,17 — 1) such that eacly € §
satisfiest;(q,a) € Q; (¢}, t;.‘ — 1) for somea € A. If S is empty, then omit the states i@ (¢, t;.‘ — 1) from
m’] Also omit any state that cannot be reached from any of the remaining states. Howeves,ibnempty,
then for eachy € S anda € A satisfyingz;(q,a) € Q;(1f, 17 — 1) let tj(g,a) = q;i wherefjf(q;." ) =D and
r]/. (q;.f, C)= r]/. (q;.f, D)= q;i . Omit all the states i@ ; (7 + 1, t}‘ —1) and any other state that cannot be reached
from any of the remaining states. '

If ¢ = 1, let the initial state ofn’/ beq;" . Otherwise, change the transition functiormof atq;" -t so that the

modified machine moves directly into staﬁ_’;é when player carries out his equilibrium action gt — 1. That is,
let the transition function 061; satisfy:

-1 -1 ,
r_}(qj’ ,fi(ql-’ ))=q§-
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If i deviates from his equilibrium action gt — 1, thenr]’.(q;" _1, —f,-(qf" _1)) depends on whether or nétis

L " -1 1 .
empty. If it is, then the transition out qf_;’ when playeri does not choosg",-(q,t‘ ) remains the same as

inm,-:
-1 -1 -1 -1
el ) =06 A ()

However, ifS is nonempty, then Ietj(q;.‘tl, —fig = q;."*.

From the above changes it follows thatm}) < x(mj) while y(m}) < y(mj). Therefore,m} is simpler
thanm ;. By Lemma 1, ifm; is a best response 1o;, then it must also be a best responsmgo Thus,(m1, m2)
cannot be aeSF of MG(§), a contradiction. O

Case 2. Both m; andmg enter their cyclic phase at the same time, but have different cycle Iengths:;‘ =r*
but I < lj .

By Lemma 1, playeri must be indifferent between the equilibrium path frefnonwards and infinite
repetitions of the sequence of outcomes fronto * + [; — 1. We use this observation to construct a simpler
machine tham:; to whichm; is a best response.

Let /i; denote the machine obtained when we make the following changes.itet S c Q; be a subset
of states inQ,\Q,- (t* +1;,t* +1; — 1) such that eacly € S satisfiest;(q,a) € Q;(t* + 1;,t* +1; — 1) for
somea € A. If S is empty, then omit the states i@;(t* + [;,t* +{; — 1) from ;. Also omit any state
that cannot be reached from any of the remaining states. Howev@r,isifnonempty, then for each € S
and a € A satisfying tj(g,a) € Q;(t* + li,t* +1; — 1) let £;(q,a) = q;-*-Hi where f/(q;*+1i) =D and
% (q;.*”", C)= f_,'(q;*Hi ,D) = q;*“". Omit all the states ifr* +I; + 1, r* +1; — 1) and any other state that
cannot be reached from any of the remaining states.

The next set of changes involves the transition functioain;*eﬁl" ~1. We change the transition function af;
so that the modified machine moves directly into the sgf;f‘temhen player carries out his equilibrium action at
t* +1; — 1. If i deviates from his equilibrium action at+/; — 1, thenfj(q;“rl;fl’ *fi(q;lel)) depends on
whether or nof§ is empty. Ifitis, then

S -1 FH -1 Fi—1 Fi—1
Bl ) =l ()

Otherwise, we let

N -1 -1 *+;
T_/(q]' ! s_fi(q]' ! )):q]' "

From the above changes it follows thatm}) < x(mj) while y(m}) < y(mj). Therefore,m} is simpler
thanm ;. Note that by construction, the sequeneés;,m ;) anda(m,-,m;.) differ only after period™ +; — 1.
Also note that the sequence that is generate(hbym}) from t* + [; onwards consists of infinite repetitions of
the outcomes betweeri andt* +; — 1 ona(m;,m;). By Lemma 1, ifm; is a best response i0;, then it is
also a best responsem:g. Thus,(m1, m2) cannot be ateSF of MG(§), a contradiction. O

Each of the Propositions 5-7, is proven in two steps. In the first step we show that given the Nash equilibria
of G, any ESF play path must satisfy certain properties. Given any play path with those properties, we can
construct a pair oESF machines that generate that play path. This is done in the second step of the proof. For
this second step we require the notion of a spanning sequence, which we define below.

Let (a') be a sequence af outcomes, which is generated by some pair of finite machines. It follows that
there exists a finite sequence of action pait&, L),

b(K,Ly= (b1, ....05 bEFL  pEFL)

such that a single repetition @bl, ..., 5%), followed by infinite repetitions ofpX+1, ... bK+L), yield the
sequencéa’). We say thab(K, L) spansthe sequencé’). We leth(K, L) denote the shortest sequence, which
spang@). Since we are considering only finite machines, there exists a shortest sequence that spans a play path.
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Proof of Proposition 5. Suppose the set of Nash equilibria@fis one of the diagonals of this game; that is, the
set of Nash equilibria o& is either{(C, C), (D, D)} or {(C, D), (D, C)}. This implies that if(a1, a2) is not a
Nash equilibrium ofG, then no player is best responding to his opponent.

Step 1. Let (m1, m2) be anESF of MG(8) for some discount factat. For each player denote the output function
and the transition function ofi; by f; andz;, respectively. Assume théi:, m,) generates a play pati’) in
which there is at least one period in which the outcomevisa Nash equilibrium of5. Let 9F5 and 05% be
the set of states ofi; andmsy, respectively that appear @&’). For each playey and for each statg; € Q/E.SF
let S;(g;) € OF be the set of states that satisfy the following: Along the gath, whenevenn  is in stateg;
the machinen; enters a state if;(¢;). By Proposition 4,5;(g;) is a singleton. For eac; € Q/E.SF we denote
the single member of; (¢;) by si(g;).

For each playerj define Q_’; to be the set of equilibrium states Q‘,‘;SF with the property that the pair of
actions, f;(¢;) and f;(si(q;)), is not a Nash equilibrium ofG (that is, whenever a state Q; appears on the
equilibrium path, the two players dw: play a Nash equilibrium o). Thus, for every; € 0%,

7;(qj. C) #7j(q;, D).
We now show thain ; can be turned into a machimd/ with the following properties:

(1) each period it chooses an action, which is different from the equilibrium actier et that period, and
(2) it moves from one state to another independently of plageactions.

Denote the set of states, the output function and the transition funct'ml;l by Q;., f /’ andr//., respectively. Let
0, = O . For eacty; € 07 let f/(¢)) # f;(q;) and

f]/-(q/w )= f]/-(q/w D) =1;(gj,ai(g;))
wherea; (¢;) = fi(si(q;)). Clearly,y(m;.) < y(mj) andx(m’/) < x(mj). This implies thatn/j is simpler tham ;.

Let m; be a machine that carries out the equilibrium actions:pirrespective of the actions by playgis
machine:

@) ¢j=0F.
(@) f{(qi) = fi(qi) for eachg; € Q.
(3) Forallg; € 0}, t/(gi, C) =7/ (qi, D) = 7i(qi, aj) Wherea; = f;(s;(qi)).

Clearly,m is a best response to boity andm’].. Thus,(m1, m») cannot be akESF of MG(8), a contradiction.

Step 2. Consider a play path in which every period players play a Nash equilibriugh. dfet b(K, L) be the
shortest sequence that spans that play path. Consider a maghivith K + L states. For each stag&, where
k=1,...,K + L, let the output bé*. The machine starts at* and passes to the other states according to a
transition function with the following properties:

gt ifk<K+L,

gE*tt ifk=K+L.

It is straightforward to verify thatm1, m») is anESF of MG(§) for any discount factos.

Ti (qk, C) = ‘L’,‘(qk, D) =

Proof of Proposition 6.

Itis easy to see that a pair of single state machines with olgatanESF of MG($) for any discount factor
§ €0, 1]. Itis also easy to see (recall Example 1) that a pair of grim trigger machines, which generate a play path
with constant cooperation, is &8F for a discount factor sufficiently close to one. It remains to show that when
§ is sufficiently close to one, there is no otH&#F play path.

Let (m1,m2) be anESF of MG(§), wheres is a discount factor sufficiently close to one. The transition
function and the output function of each equilibrium machine is dengteohd f;, respectively. The following
series of claims relate to the path generatedrboy, m>).
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Claim 6.1. If both players choose C in the first period, then they must continue to do so in every subsequent
period.

Proof. Assumeal = (C, C) and lets* be the first period with the following property: Both players choGse
in this period & = (C, C)), but at least one of the players, sayswitches toD in the subsequent period
(a’*+1 € {(Ci, Dj), (D, D)}). Assume there exists such a peridd

From our assumption that both players cooperate in periodsr1 itofollows thatm; has a non-constant
transition in each of the states that are visited in those perigajq}, C) # r]-(q;., D) fort=1,...,t* where

T (q;.*, C)= q;*+1. Moreover, for playet to cooperate at= 1 it must be the case thaj (q}, D) # q}. From

our assumption that playgrdoes not cooperate #t+ 1 it follows thatm ; has at least one state distinct frqﬁ.
From our conclusion that '

7i(¢) . D) ¢ {a} . q} 1}

it follows thatm ; has one other state distinct from bo;tﬁ andq;.*“. Hence,n; must have at least three states.

Let m’] be a machine with only two stat@#’ andqjc and a transition functiomj/.. The machine starts from
stateq]‘.’ where the output i9D and the transition function satisfie§(q]‘.’, D) = q]l.) and 7} (q]P, C)= qjc. In
StatF,‘qjC the output isC and oncem’; enters this state, it remains there regardless of the output; of.e.,

r]/. (q]l-), D) = r]/. (qu, C)= q]-C. From our conclusions regarding the properties:¢fit follows thatm’]. is simpler
thanm .

Letm; be a machine with the following properties. The set of states;dé Q. = Q; U {qiD} such that both
machines start from the same initial stqﬁe In each of the stateg € Q; the output of both machines is the same,
i.e.,fl-/(q,‘) = fi(g;) forallg; € Q;. In addition,ri’(q,,a_,) =T (q,-,a,-) forall g; € Q,\{qto} anda,- e {C, D}. At
the initial state, which is common to both machines, we hdg?, C) = 7; (¢, C) andt/(¢?, D) = ¢ where
gP is a state in which the output ® and the transition function i/ (¢, D) = t/(g”, C) = ¢P. Clearly,m} is
a best response m_’, for & sufficiently close to one. Moreover, by constructiorj,is also a best responsetg .
This contradicts our assumption that1, m») is anESF of MG(§). O

Claim 6.2. If both players choose D in the first period, then they must continue to do so in every subsequent
period.

Proof. Assumeal = (D, D) and lets* be the first period with the following property: Both players choose
D in this period & = (D, D)), but at least one of the players, sayswitches toC in the subsequent period
@ e, Dj), (C, C)}). Assume there exists such a peridd
Letm; be a single state machine with outgtit Clearly,m; is simpler thanmn;. Letm} be a machine, which
is different fromsm ; only in the following respect:
r]’- (q? C) = q?.
Itis easy to see thaﬁ; is a best response to both andm}. O

Claim 6.3. Suppose there exists some period # inwhich a’ = (C;, D). Let ¢'; be the state of m ; in period ¢. Then
Tj(q;w D) =q;.
Proof. Assume thatr,-(q;, D) # q;.. Thenm; can be simplified by letting it remain iq;, unless player

choosesC. Denote this simpler machine by/J Sinces is sufficiently close to one, it follows that; is a
best response to both; andm’;, a contradiction. O

Claim 6.4. If there exists some period ¢ in which & = (C;, D;), thenr > 1.

Proof. Supposeal = (C;, D;). We show that(m1, m2) cannot be arESF of MG(8). Since D is a dominant
strategy the transition from the initial statesef must satisfy:

7j(4}. D) #7(4}. C).
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By Claim 6.3,7; (q']:-), D) must be equal tq?. Thus,m; can be simplified such that; will be a best response
to bothm; and its simplification. To see why, let; be a single state machine with a constant outpud oElearly,
m; is simpler thann;, andm ; is a best response 1@;. Since this contradicts our assumption thag, m2) is an
ESF of MG(8), it must be the case that # (C;, D;). O

Claim 6.5. There exists no period in which the outcome is (C;, D).

Proof. Letz* be the earliest period in which one player chooSeshile the other chooseB. By Claims 6.1 and
6.2, the outcome in the first period cannot(iae C) or (D, D). Hence* = 1, in contradiction to Claim 6.4. O

From Claims 6.1-6.5 it follows that the only possiB&F play paths are ones in which the players coordinate
each period. O

Proof of Proposition 7.

Step 1. Let (m1, m2) be anESF of MG(8) wheres is a discount factor that is close to one. ltetdenote the
first period on the equilibrium path in which machihenters a state that had already appeared beforBy
Proposition 47 =15 =t*.

Claim 7.1. If there exists a period ¢ < ¢* in which both players choose C, then both players continue to choose C
in every period between ¢ and ¢*.

Proof. Assume the claim is false, so that on the equilibrium path there is a pesod < r* in which the
outcome is(C, C), while at’ + 1 at least one player, sgy choosesD. Let q;’ be the state of:; ats’. Consider

making the following change im ;. First, change the output of ; in stateq;.' from C to D, and let the machine
remain in that state for every action by playeiSecond, omit the states @; (" + 1, t*) from m/] Also omit
any state that cannot be reached from any of the remaining stateS.d.€; (1, ..., — 1) such that for each
q € S there existsa(q) € A satisfyingz;(g,a(q)) € Q;(t' + 1,1*). If S is nonempty, then for each € S let
Ti(q.a(@) =q; .

Denote the machine that results from this changmpyCIearIy,x(m;.) < x(mj) and y(m_’/) < y(mj), and
som’; is simpler thann ;.

Consider next a machine;, which is identical tom; except for the following difference: The machine
remains in state;l.” unless the output of playei's machine isC, in which casem’]. moves to state;l.”+1 (i.e.,

t/(q!', D) =¢q", while 7/(q!, C) = ¢/ *1). Itis easy to see that] is a best response to bot; and tom;, in
contradiction to the assumption th@tq, my) is anESF of MG(§). O

Claim 7.2. Suppose that on the equilibrium path there is a period ¢ in which the outcome is (D;, C;). Then the
outcome in every subsequent period must also be (D;, C).

Proof. Let? be the smallest that satisfies: There existsuch that

a (my,mp) = (D;, Cy),  att(my,ma) # (Di, C)).

Assume the claim is false so that a perioés defined above, exists on the play patlimef, m»). Let qif be the
state ofin; atf. From Proposition 4 it follows that regardless of the outpuf’sfmachine;n; does not remain in
g! in period?f + 1.

By Claim 7.1, there is no period befofén which the outcome i$C, C). Thus, in every period beforef the
outcome is eithetD, D) or (D;, C;). It follows that the transition function of; must satisfy the following:

q' if & (m;,m;)= (D, D),

t
(q",C) = )
fi (q ) ‘L’i(qt, D) if a‘(m,-,m,-) =(D;,C)).



308 K. Eliaz / Games and Economic Behavior 44 (2003) 286-310

This has three important implications. First, the only stateinthat appears on the equilibrium path befoend
which has a transition intqf, is qf*l. Second, none of the states, which appear on the equilibrium path before
have a transition into a state that does not appear on the path in theirsdds: For every < 7 anda € {(C, D},
(g, a) e{q', q'"1).

Suppose we make the following changesrn First, we change its output qﬁ from D to C. Second, we
change the transition function ai such that the machine remains in that state for every action by pjayer
Finally, we delete any state that does not appear in the firstiods of the equilibrium path. Denote the resulting
machine byn.. Thenx(m;) < x(m;) andy(m}) < y(m;), which means thak; is simpler thann; .

Consider a machinxa’j, which is identical ton ; except perhaps for the transition functior‘qétm} remains

in that state unless playérchoosesD, in which casem’j moves th;“.

To complete the proof we need to show that the assumption that a peesists necessarily leads to
a contradiction. We show this by proving thafj is a best response to bott; andm). We first show that
m’/ is a best response to;. Note that the only difference betweery andm;. can be the transition out of stagé
when the output of players machine isC. Since the output ofi; atf is D, both(m;, m;) and(m;, m_’/) generate
the same play path. Since by assumptian,is a best response to;, SO iSm’]..

We now show thatn/j is a best response i@;. First, note thain; includes all the states af; that appear
on the play path ofm;, m;) beforei. Moreover, both the transition function and the output functiombfat
those states are the same as:jn Second, note that the first- 1 outcomes in the play path 6fz;, m;) are also
the firstf — 1 outcomes in the play path Ofn, m’/) However, from/ onwards playerj prefers the play path

of (ml’.,m;.) to that of (m;, m ). In addition, when| reacheSqf it is optimal for player; to constantly playC.

Hence, from the result that} is a best response to;, and from the fact that the output mf} at q§ is C andm’;
remains in that state when playiechoose<, it follows thatm’/ is a best response i@,. O

Claim 7.3. Let ¢ be the earliest period on the equilibrium path that satisfiesr < r* and & = (C, C). Thenr < 2.

Proof. Assumer > 2. By Claims 7.1 and 7.2, the first two outcome on the equilibrium path musDb®).
SinceC is dominating for each player, both; andm ; must have non-constant transitions in the first two states
on the equilibrium path. Thereforg(m ;) > 2. It is also easy to see thatm ;) > 2. We now construct a pair of
machines(m}, m';) as follows.

. m’] has three stateg?, ¢ andgC. It begins a;® where the output i€’. It moves taog? if the initial move

of i is C. Otherwise, it moves to state . The output ag? is D, and ifm//. reaches that state, it remains there
for every action of playet. Similarly, the output at€ is C, and if m’, reaches that state, it remains there
for every action of player. The machinen_’/ is depicted in Fig. 9. It follows that(m_’/) =2 buty(m/j) =1.
Therefore;’; is simpler thann ;.

m'’ is constructed by adding a stateig and changing the transition function af’s initial state. Let

q; andqil be the two states ofi; such thaty? is the initial state, ang? is the state that followg® on the
equilibrium path. If the initial action of playei’s machine isD, m; moves to stateil. However, if player;’s
initial move isC, thenm moves to a new state (one that is notir) in which the output iC. m; remains

in that new state for every action of playgr Figure 10 displays an example of a three-stateand the
correspondings.

By construction,n; is a best response to bath; and m’] This implies that(m;, m ;) cannot be arESF of
MG($), a contradiction. O

Claim 7.4. If u;(C;, D) > u;(D;, C}), there exists no period on the equilibrium path in which the outcome is
(Di, Cj).

Proof. Assume there exists some periodaimy, m2) in which the outcome i$D;, C;). Let¢* be the earliest
period with that property. By Claim 7.2, the outcome in every subsequent period must algp, l6&). This
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implies that playetr necessarily prefers to have the outco(i, C;) from ¢* onwards to having the outcome
(Ci, D;) onwards. This in turn implies that (C;, D;) < u;(D;, C;), a contradiction. O

Suppose there exist a pair of periods such that the outcome in ¢6iedy, while the outcome in the other is
(D;, C;). Letr andt’ be the earliest periods with this property, so that fnak} < r*. Let (a,?, a'/) =(C,C) and
(al )= (D;,C)). Assumer <'. By Claim 7.1,(a}, a}) = (C, C) for all * > s > ¢, a contradiction. Assume

t>1'.ByClaim7.2,(a,a%) = (D;, C;) for all s > ¢, a contradiction. Thus(m1, m2) can be of only two types:

(1) Each period the players miscoordinate, i.e., the outcome each period is(&itf@y or (C, D).
(2) Each period the players coordinate, i.e., the outcome each period is(€it/@y or (D, D).

Suppose(my, my) is of the first type. Then by Claim 7.8(m1, m2) consists of infinite repetitions of either
(C, D) or (D, C). Suppose(m1, my) is of the second type. Then by Claims 7.1 and @331, m2) can be one
of three types:

() (C, C) each period.
(2) (D, D) in the first period, followed by infinite repetitions o€, C).
(3) Infinite repetitions of the sequen¢®, D), (C, C).

Step 2. Let ((a}, a}))?2, be a sequence of action-pairs that can be generated by a pair of finite machines.
Suppos&ai, a‘z) = (D;, C;) for all ¢. Let (m;,m ;) be the following pair of machines:; has a single state
in which the output isD. m; has two states, the initial stat¢’ and a “punishment statej. The output at
¢CisC, andm; remains in this state unless playethoose<C, in which casen; moves tog”. The output at
qPis D, andm; remain in this state regardless of what playsractions. Clearlya(m;, m;) = ((ag,a;));'gl.
If u;(C;, Dj) <u;(D;, Cj), then bym; is a best response i0; for § sufficiently close to one. Furthermore, it
is easy to verify thain; is the simplest machine that induces playeo constantly choos®. It follows that
(m;, m;) is anESF of MG($) for § > &*.
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Suppose next that(a}, a5))?2,; consists only of outcomes on the main diagonal (i€.,C) or (D, D)).
There are three possible play paths. For each possible path, we construct a pair of identical ntac¢hinés
that generate that path.

Case A. Suppose players choog€, C) each period. Lein* be a single state machine with an outputcaf
Clearly, (m*, m*) is anESF of MG(38) for any discount factor.

Case B. Suppose the initial outcome {®, D), followed by a constant play afC, C). Let m* have two states,
gP andg¢C. The output ay? is D, while the output ay€ is C. The machine begins at” and remains there
unless the opponent’s initial move . In that casen* moves to statg® where it stays regardless of the actions
of the other player.

If § is sufficiently close to one, them* is a best response against itself. &t denote a machine that is
simpler thanm*. If x(m’) < x(m*) (i.e., m’ has only one state), then clearly any best response’ twould
require a player to choos@ each period. Ifc (m") = x(m*), theny(m’) = 0. This means any best response:to
cannot have an output function that assigns the adfido the initial state. It follows thatm™, m*) must be an
ESF of MG(9) for § sufficiently close to one.

Case C. Suppose the path consists of infinite repetitions of the sequ@dc®), (C, C). The machine here is
almost identical to the one described in point 2 above. The only difference is, that frong Stétte machine

returns to statg? regardless of the action chosen by the other player. By using the same arguments as in Case B,
one can verify thatm*.m*) is anESF of MG(§) for § sufficiently close to one.

This completes the proof of Proposition 70
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