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Abstract

We present a model of optimal training of a rational, sluggish

agent. A trainer commits to a discrete-time, finite-state Markov process

that governs the evolution of training intensity. Subsequently, the

agent monitors the state and adjusts his capacity at every period.

Adjustments are incremental: the agent’s capacity can only change

by one unit at a time. The trainer’s objective is to maximize the

agent’s capacity - evaluated according to its lowest value under the

invariant distribution - subject to an upper bound on average training

intensity. We characterize the trainer’s optimal policy, and show how

stochastic, time-varying training intensity can dramatically increase

the long-run capacity of a rational, sluggish agent. We relate our

theoretical findings to “periodization”training techniques in exercise

physiology.
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1 Introduction

Economists have a long tradition of invading other academic disciplines.

Lazear (2000) celebrates this so-called economic imperialism, demonstrating

its value for such diverse fields as sociology, criminology and organizational

behavior. Proponents of economic imperialism maintain that the ideas of

individual rationality, forward-looking behavior, rational expectations and

equilibrium analysis help us understand underlying mechanisms behind em-

pirical regularities, and consequently guides policy interventions. Recently,

economists applied the imperialistic approach to the field of epidemiology, in

the context of the Covid-19 pandemic (Acemoglu et al. (2020)).

This paper carries the imperialistic approach to a new territory: it ap-

plies tools from economic theory to the field of exercise physiology, which

studies the body’s response to exercise and adaptation to exercise training

to maximize human physical potential (for an introduction to this field, see

Glass et al. (2014)). Specifically, we focus on the question of how the body’s

muscle mass responds to patterns of physical exercise. We demonstrate that

by modeling the body as a forward-looking optimizing agent, we gain insights

into the effectiveness of popular physical training strategies.

To describe the body as an optimizing agent, we need to specify its pref-

erences. On the one hand, maintaining muscle mass is costly in terms of

energy expenditure. The larger the mass, the higher the cost (Zurlo et al.

(1990)). On the other hand, if muscle mass is too low relative to the demands

of exercise, the body may incur the energy costs of repairing torn muscle tis-

sue or inflammation (see Frankenfield (2006) and Faulkner et al. (1993)).

Moreover, if the body lacks adequate muscle mass, it will not be able to

complete the required physical task. It is plausible to assume that the body

will record this performance gap as a cost. This cost can be interpreted in

terms of psychological motivation, which itself may originate from evolution-

ary survival pressures (see Sagar and Stoeber (2009) and Lieberman (2015)).

A more motivated trainee will record the performance gap as a larger cost
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relative to the muscle maintenance cost.

In a dynamic environment where the intensity of exercise changes sto-

chastically over time, a key ingredient in modeling the body as an optimiz-

ing agent is its expectation of future demands. Here, too, we follow the

economist’s standard recipe and assume that the body has rational expecta-

tions - i.e., it knows the stochastic process that governs the future evolution

of physical exercise (possibly as a result of some previous adaptive-learning

phase).

Using these ingredients, we construct the following stylized discrete-time

model. At period 0, a “trainer”commits to a strategy, which is a stochastic

process over exercise intensity. We restrict ourselves to stochastic processes

that follow a finite-state Markov chain. The average intensity (according

to the chain’s invariant distribution) cannot exceed some integer µ, which

represents a “budget constraint” that limits the amount of resources that

can be devoted to physical training.

Following the trainer’s choice of strategy, at every subsequent period, the

body (referred to as an “agent”) observes the state of the trainer’s Markov

process and then chooses its muscle mass. We assume that the body can only

make incremental adjustments to its muscle mass: at every period it can only

change the mass by −1, 0 or 1 units. The body is an expected discounted
utility maximizer, with a periodic payoff function that trades off the mainte-

nance cost of muscle mass and the excess intensity of current physical exercise

relative to current mass. Specifically, the agent’s periodic cost when the cur-

rent mass is m and the current intensity is d, equals cm + max{0, d − m},
where c represents the maintenance cost (note that we measure intensity and

mass on the same scale). We focus on the non-trivial case in which c < 1.

We impose the constraint that the agent has a best-reply to the trainer’s

strategy that induces a Markov process (over an extended state space that

also includes m in the definition of a state) with a unique invariant distribu-

tion. The trainer’s problem is to choose the Markov process to maximize the
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agent’s long-run mass - evaluated according to its minimal realization under

the invariant distribution. Our use of the max-min criterion is justified by

the interpretation of m as a capacity: the higher the agent’s minimal long-

run mass, the higher the intensity he can consistently withstand in the long

run.

The sluggish adjustment of muscle mass is a fundamental assumption

in our model. Exercise intensity can fluctuate wildly between periods, but

clearly, the body cannot change its muscle mass instantaneously to any level

(see DeFreitas et al. (2011) and Counts et al. (2017)). If the body had

perfect flexibility in adjusting its muscle mass, our model would be trivialized:

at every period, muscle mass would be set such that the excess intensity

gap d − m is zero. As a result, under full flexibility, the long-run average

mass will be at most µ. This is also the minimal long-run mass that the

trainer can attain with a constant-intensity policy. Under such a policy, the

distinction between sluggish and flexible agents is irrelevant. The question is

whether using some non-degenerate Markov process will enable the trainer

to outperform this benchmark when muscle adjustment is sluggish.

The trainer’s problem is similar in spirit to Bayesian persuasion (Ka-

menica and Gentzkow (2011)). In a persuasion problem, the sender wants to

increase the receiver’s action; in our model the trainer wants to increase the

agent’s muscle mass. In a persuasion problem, the sender commits to a sig-

nal function; in our problem, the trainer commits to a Markov process. In a

persuasion problem, the receiver’s response to a signal realization is dictated

by Bayesian updating; in our model, the agent’s response to a realized state

is constrained by sluggish adjustment. Finally, in a persuasion problem, the

sender’s ability to attain his objective is constrained by Bayes plausibility,

which requires the average posterior belief to equal the prior; in our model,

the trainer is constrained by the average intensity limit µ.

It is unclear how forward-looking the body is when adjusting its muscle

mass. Accordingly, our analysis focuses on two extreme cases in terms of
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the agent’s discount factor. We begin by analyzing a myopic agent with a

discount factor of zero. In this case, the agent’s adjustment rule is inde-

pendent of the trainer’s strategy: the mass moves up (down) a notch when

the realized intensity is above (below) the current mass. We show that the

trainer cannot attain a minimal long-run muscle mass above 2µ− 1. He can
implement this upper bound using the following two-state Markov process.

Physical intensity has two values, 0 and 2µ. The transition from 0 to 2µ is

deterministic, while the transition from 2µ to 0 occurs with a probability that

is arbitrarily close to one. This policy ensures that regardless of the initial

muscle mass, the agent eventually oscillates between muscle mass levels 2µ

and 2µ−1. Thus, a properly designed stochastic training program can vastly
outperform the flexible-adjustment benchmark.

We next turn to the case of an arbitrarily patient agent. We show that

in this case, the trainer cannot attain a minimal long-run muscle mass above

µ/c− 1 (we assume that µ/c is an integer, for convenience). The trainer can
approximate this bound arbitrarily well with a two-state Markov process that

is similar to the one we construct for the myopic-agent. Physical intensity

has two values, 0 and µ/c. The transition in one direction is deterministic,

while the transition in the other direction is a function of c, such that the

invariant probability of µ/c is almost c. This policy ensures that regardless of

the initial muscle mass, the agent eventually oscillates between muscle mass

levels µ/c and µ/c− 1. Note that the upper bound on the minimal long-run
mass in the patient-agent case is above the upper bound in the myopic-agent

case if and only if c < 1
2
.

Our results suggest a rationale for the popular training technique of pe-

riodization, which structures the training regiment as a cycle with phases

of high intensity physical load and recovery phases of low intensity. Since

it first began in the 1960s, this methodology has gained popularity and is

currently the dominant technique used by professional athletes. Numerous

studies have documented the success of periodization in terms of increased
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muscle mass, increased muscle strength, greater endurance and athletic per-

formance (Bompa and Buzzichelli (2018)).1 While the physiological literature

offers biological explanations for the superiority of a cyclical training design

(e.g., see Issurin (2019)), our results provide a complementary perspective:

the effectiveness of periodization techniques may stem from the rational yet

sluggish adaptation of the body to fluctuations in physical stimuli.

Although our paper strictly follows the exercise-physiology interpretation

of the model, the abstraction of the economic-modeling approach enables

other interpretations. For example, the variablesm and d may represent cog-

nitive capacity and the intensity of cognitive activity, such that our results

can be viewed in terms of training programs for building and maintaining

cognitive skills. Moving entirely away from physiological or neurological in-

terpretations, we can view the agent as an organization, like the military or a

fire brigade. The problem is to design a drill program to build and maintain

the organization’s level of preparedness. The max-min criterion is appealing

in this context. Sluggishness is a natural assumption in this setting: these or-

ganizations cannot drastically improve their level of preparedness overnight;

and likewise, deterioration in preparedness tends to be gradual. Our analysis

sheds light on the optimal design of a drill program for such organizations.

More generally, we find the optimal design of a stochastic process for a slug-

gish agent to be an interesting (and, to our knowledge, new) problem from

an abstract economic-theory perspective.

2 The Model

We consider a principal-agent model, in which the principal is referred to as

a “trainer”. We will focus on the interpretation that the agent is a physio-

logical system that is trained to increase its capacity. The trainer commits

1For recent discussions of various periodization techniques, see Issurin (2010), Kiely
(2012) and Kiely et al. (2019).
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ex-ante to a pair (P, f), where P is a discrete-time, Markov process over some

finite set of states S, and f : S → N+ is an output function that assigns a
challenge level to every state s ∈ S. We denote by dt the challenge level in
period t. When there is no risk of confusion we will replace the notation f(s)

with d(s).

We impose the following constraints on (P, f). First, P has a unique

invariant distribution λP . Second,∑
s∈S

λP (s)f(s) ≤ µ

where µ ≥ 1 is an integer. That is, the long-run average challenge level is at
most µ.

The agent knows the trainer’s choice of (P, f). At every period t, he

observes the realized state st and then chooses a non-negative capacity level

mt ∈ {mt−1 − 1,mt−1,mt−1 + 1}. Henceforth, we refer to mt as the agent’s

“mass”at time t. Let m0 ∈ N+ be the agent’s initial mass. The restricted
choice set for mt reflects the sluggish adaptation of the agent’s mass.

The agent is an expected discounted utility maximizer with discount fac-

tor δ. His payoff at period t is

−[cmt +max(0, dt −mt)]

where c ∈ (0, 1) and dt = f(st), where st is the state of the Markov process

P at period t.

Note that given (P, f), the agent faces a Markov decision problem over

an extended state space, where the state at period t is the pair (st,mt−1).

We impose the following additional constraint on the trainer: the extended

Markov process over (st,mt−1) that is induced by the agent’s best-reply to

(P, f) has a unique invariant distribution λ∗(P,f). This ensures that the long-

run average mass, as well as the minimal long-run mass, are well-defined and

independent of the initial condition m0.
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The trainer aims to maximize the agent’s lowest muscle mass in the sup-

port of the invariant distribution λ∗(P,f). Formally, the trainer’s problem can

be stated as follows:

sup
(P,f)

min{m | λ∗(P,f)(s,m) > 0 for some s ∈ S}

subject to the feasibility constraint∑
(s,m)

λ∗(P,f)(s,m)f(s) ≤ µ

Note that we use sup rather than max to state the trainer’s problem. The

reason is that the set of pairs (P, f) that induce an extended Markov process

with a unique invariant distribution is not closed.

Interpretation

For the sake of expositional focus, we adopt the interpretation of the agent

as the human body where m represents muscle mass. The trainer’s objective

is to maintain a high long-run level of muscle mass. The supmin criterion

means that the trainer looks for the highest capacity that the agent’s body

consistently maintains in the long run. The constraint that the long-run

average of d is at most µ captures a resource constraint in terms of the

average amount of training per unit of time that the agent can afford. For

example, the trainee can only devote a certain fraction of his time for training.

Exercise intensity d can be interpreted in terms of duration (e.g. the num-

ber of repetitions of a given exercise), load (e.g. lifting weight) or effort (e.g.

running speed).2 Of course, the stylized nature of our model abstracts from

such fine distinctions. However, the interpretation of the resource constraint

does depend on the meaning of exercise intensity. If d represents exercise

duration, then µ is the average amount of time per period that the trainee

2See Steele (2014) and Steele et al. (2017) for discussions of these different notions of
intensity.

8



can devote to physical exercise. If, however, d represents load or effort, µ

is perhaps better viewed as a parameter of the trainer’s problem than an

exogenous constraint.

We view the human body as an optimizing system that minimizes costs.

The sluggishness assumption captures the fact that the body cannot instan-

taneously change its body mass to any level, but does so in increments (even

though the challenge levels may fluctuate dramatically between periods).

The body’s periodic cost function incorporates two factors. First, cmt is the

caloric maintenance cost of muscle massmt. Second, the gap betweenmt and

dt (when the latter is higher) represents a performance shortfall because the

agent’s capacity is lower than the challenge it faces. This cost can be purely

physical reflecting body stress, inflammation or the repair of torn tissues.

Alternatively, it may be viewed as motivational: the body internalizes the

trainee’s psychological motivation to complete challenges. Thus, the higher

the agent’s minimal long-run mass, the higher the challenge level that he is

guaranteed to meet in the long run.

Under this interpretation, our model endows the human body with ratio-

nal expectations because it has knowledge of (P, f) when making a decision.

The rationale for this assumption is that the body forms adaptive expecta-

tions based on a long memory. Hence, it is reasonable to assume that in the

long-run it will be able to learn Markov processes with suffi ciently low dimen-

sionality. This is one of our reasons for restricting the trainer to finite-state

Markov processes (the other reason being expositional simplicity).

The adaptive-expectations rationale also underlies our restriction that

the trainer does not condition dt on past realizations of m. Under rational

expectations, if the trainer could condition d on past choices of m, he would

be able to incentivize the agent using off-equilibrium threats. For instance,

he could incentivize to increase muscle mass using a policy of zero challenges

sustained by a threat to switch to extreme challenges if m fails to increase.

We find such policies absurd in the physiological context, and therefore, rule
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them out by assuming that the trainer does not condition on m. Under our

alternative interpretation of the agent as an organization, it is questionable

whether the trainer can monitor m, which represents the organization’s level

of preparedness.3

Benchmark: Completely flexible adjustment

Suppose the agent could choose any mt ∈ N+ at every period. Then, since
c ∈ (0, 1), it would be optimal for him to choose mt = dt at every t. This

means that the long-run average of mt would coincide with the long-run

average of dt, which by assumption cannot exceed µ. Therefore, the best

the trainer can do according to his supmin criterion is to play a constant

strategy dt = µ at every period, such that this flexible agent’s mass will be µ

as well. The same deterministic process attains the same long-run mass of µ

also when the agent is sluggish (because the agent will eventually reach this

mass and stay there indefinitely). The question is whether the trainer can

outperform this benchmark with a non-degenerate Markov process.

3 A Myopic Agent

In this section we analyze the trainer’s problem when δ = 0 - i.e., the agent

is myopic. We show that by using a non-degenerate Markov process over d,

the trainer can increase the agent’s minimal long-run mass by a large margin

(nearly twice for large µ), relative to the flexible-agent benchmark.

Proposition 1 Let δ = 0. Then:

(i) For any trainer strategy, the minimal long-run mass induced by the agent’s

best-reply is bounded from above by 2µ− 1.

(ii) This upper bound can be implemented by the following (P, f). The Markov

3We conjecture that if the trainer can condition dt on mt−1, the results in our paper
will not change.
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process P has two states, H and L and a transition matrix given by

Pr(st → st+1) L H

L 0 1

H β 1− β

where β is arbitrarily close to 1. The output function is f(H) = 2µ and

f(L) = 0. In the β → 1 limit, the invariant mass distribution assigns proba-

bility 1
2
to m = 2µ and m = 2µ− 1.

Thus, we see that in the presence of a sluggish agent, a slightly perturbed

cyclic training program can dramatically increase the minimal long-run mass.

The trainer’s “training regime”approximately consists of alternating periods

of high intensity (d = 2µ) and rest (d = 0). However, after a period of high

intensity training, there is an arbitrarily small chance 1 − β that the high-
intensity episode will be repeated. This stochastic perturbation ensures that

the set of mass values {2µ, 2µ − 1} is absorbing: the agent will reach it in
finite time with probability one, regardless of m0.

Proof of part (i) of Proposition 1
The proof proceeds by a series of steps. Recall that we use the notation d(s)

as a substitute for f(s).

Step 1: The agent’s strategy
Consider the agent’s move at period t, given the extended state (st,mt−1). A

myopic agent will choosemt to minimize cmt+max(0, d(st)−mt). Therefore,

we can immediately pin down the agent’s behavior, independently of the

trainer’s strategy. Since c ∈ (0, 1), we obtain the following: if d(st) > mt−1,

the agent will choose mt = mt−1 + 1; if d(st) < mt−1, the agent will choose

mt = mt−1 − 1; and if d(st) = mt−1, the agent will choose mt = mt−1. That

is, the agent will always adjust his mass in the direction of the current level

of d. �
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Consider an arbitrary strategy for the trainer, which induces an extended

Markov process with a unique invariant distribution. Let (mt−1, dt)t=1,2,...

be a possible sample path that results from the extended process. By the

unique-invariant-distribution requirement, the extended process is ergodic.

Therefore, the long-run frequency of every (m, d) in the sample path coin-

cides with the probability of this pair according to the invariant distribution.

Let λ(m, d) denote the probability of (m, d) according to the invariant distri-

bution, as well as the frequency of (m, d) in the sample path. Let X be the

set of recurrent pairs (m, d) in the sample path (omitting the time subscripts

t− 1 and t from m and d). Partition X into three classes:

X+ = {(m, d) ∈ X | d > m}
X− = {(m, d) ∈ X | d < m}
X0 = {(m, d) ∈ X | d = m}

Step 2: Showing that

∑
(m,d)∈X+

λ(m, d)(m+ 1) =
∑

(m,d)∈X−
λ(m, d)m (1)

Consider some period t along the sample path such that (mt, dt+1) ∈ X+.

By definition, this pair is recurrent. Therefore, it must be visited again in

some later period. Let t′ + 1 be the earliest such period. Since m moves

only in one-unit increments, it must be the case that (mt′ , dt′+1) ∈ X− and
mt′ = mt+1. We have thus defined a one-to-one mapping from periods t for

which (mt, dt+1) ∈ X+ to periods t′ for which (mt′ , dt′+1) ∈ X−, such that
mt′ = mt + 1. In a similar way, we can define a one-to-one mapping from

periods t for which (mt, dt+1) ∈ X− to periods t′ for which (mt′ , dt′+1) ∈ X+,

such that mt′ = mt − 1. It follows that

lim
T→∞

∑T
t=1 1[(mt, dt+1) ∈ X+] · (mt + 1)

T
= lim

T→∞

∑T
t=1 1[(mt, dt+1) ∈ X−] ·mt

T
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which can be rewritten as (1). �

Step 3: Showing the long-run average of m is at most 2µ
The long-run average of m induced by the trainer’s strategy can be written

as

E(m) =
∑

(m,d)∈X+

λ(m, d)m+
∑

(m,d)∈X−
λ(m, d)m+

∑
(m,d)∈X0

λ(m, d)m (2)

By the feasibility constraint,∑
(m,d)∈X+

λ(m, d)d+
∑

(m,d)∈X−
λ(m, d)d+

∑
(m,d)∈X0

λ(m, d)d ≤ µ

By definition, d ≥ m+ 1 for every (m, d) ∈ X+, d ≥ 0 for every (m, d) ∈ X,
and d = m for every (m, d) ∈ X0. Therefore,∑

(m,d)∈X+

λ(m, d)(m+ 1) +
∑

(m,d)∈X−
λ(m, d) · 0 +

∑
(m,d)∈X0

λ(m, d)m ≤ µ

This means that∑
(m,d)∈X+

λ(m, d)m ≤
∑

(m,d)∈X+

λ(m, d)(m+ 1) ≤ µ−
∑

(m,d)∈X0

λ(m, d)m

By (1), it follows that∑
(m,d)∈X−

λ(m, d)m ≤ µ−
∑

(m,d)∈X0

λ(m, d)m

as well. Plugging the last two inequalities in (2), we obtain

E(m) ≤ 2µ−
∑

(m,d)∈X0

λ(m, d)m ≤ 2µ

�
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Step 4: Showing the minimal long-run value of m is at most 2µ− 1
Suppose that the long-run distribution over d is degenerate at some d∗.

Therefore, d∗ ≤ µ. The agent’s myopic best-reply implies that eventually,

his mass will coincide with d∗. It follows that in order to reach a minimal

long-run mass above µ, the long-run distribution over d must assign positive

probability to at least two values. This means that there will be infinitely

many periods t in which dt 6= mt−1. By the agent’s myopic best-replying, this

precludes the possibility that the long-run distribution over m is degenerate.

Since the long-run average of m is at most 2µ, there must be infinitely many

periods t in which mt ≤ 2µ− 1. This completes the proof of part (i). �

Proof of part (ii) of Proposition 1
Consider the trainer’s strategy described in part (ii) of the statement of the

result. As long as β ∈ (0, 1), the Markov process over m that is induced

by the strategy and the agent’s best-reply (given by Step 1) has a unique

invariant distribution, with m = 2µ and m = 2µ−1 being the only recurrent
mass values. The reason is that if mt > 2µ, mt+1 = mt − 1 with certainty;
if mt < 2µ − 1, there is a positive probability that there will be a streak of
realizations d = 2µ such that m will keep adjusting upward until it reaches

m = 2µ; and finally, if dt = 0 then dt+1 = 2µ for sure, which means that once

m hits 2µ and later goes down to 2µ− 1, it will return to 2µ immediately in
the next period. Finally, in the β → 1 limit, the invariant distribution over

m assigns probability 1
2
to each of the values m = 2µ and m = 2µ− 1. This

completes the proof of part (ii). �

4 A Patient Agent

In this section we characterize the solution to the trainer’s problem when

the agent is forward-looking and arbitrarily patient. For expositional conve-

nience, we assume that µ/c is an integer.
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Proposition 2 Let δ be arbitrarily close to 1. Then:

(i) The minimal long-run mass at the solution to the trainer’s problem is

bounded from above by µ/c− 1.

(ii) This upper bound can be approximated arbitrarily well by (P, f) with the

following properties. The Markov process P has two states, H and L, and a

transition matrix given by

Pr(st → st+1) L H

L 1− α α

H β 1− β

where α = 1 if c ≥ 1
2
, β = 1 if c < 1

2
, and α/(α + β) is arbitrarily close

to c from above. The output function is f(H) = µ/c and f(L) = 0. In the

α/(α + β)→ c limit, the invariant mass distribution assigns probability c to

m = µ/c and probability 1− c to m = µ/c− 1.

The upper bound on the agent’s minimal long-run mass is higher than

in the myopic benchmark whenever c < 1
2
. Moreover, it gets arbitrarily high

when c→ 0. In contrast, when c is close to one, the highest minimal long-run

mass is close to the flexible-agent benchmark µ.4

The structure of the Markov process that approximates the upper bound

is similar to the one we constructed for the myopic-agent case. The main dif-

ference is that persistence of one of the two states occurs with non-vanishing

probability. When c < 1
2
, a “rest period”(corresponding to the state L) is fol-

lowed by another one with probability approximately equal to (1−2c)/(1−c).
When c > 1

2
, a high-intensity training period (corresponding to the state H)

is followed by another one with probability (2c− 1)/c.
Compare this result with the myopic case of the previous section. The

myopic agent only responds to the realizations of d, disregarding the trainer’s

4Because µ/c is an integer, we rule out the possibility that c is arbitrarily close to one.
In that case, the trainer cannot outperform the flexible-agent benchmark of µ.
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overall strategy. In contrast, the patient agent reacts to the trainer’s strategy.

In particular, when c < 1
2
, the trainer’s program allows for a streak of d =

0 realizations. When this happens, the patient agent does not lower his

mass below µ/c − 1, because he takes into account the future loss d − m

in the event that d switches to d = µ/c. The trainer designs the transition

probabilities such that the patient agent’s intertemporal trade-offs lead him

to be indifferent between lowering his mass and remaining at m = µ/c − 1.
In contrast, the myopic agent cannot be made indifferent when faced with

a streak d = 0 realizations: he repeatedly lowers his mass. This difference

enables the trainer to achieve a higher minimal long-run mass when the agent

is patient, as long as c < 1
2
.

We now turn to the proof of Proposition 2. In our proof of part (i),

we actually prove a somewhat stronger result: in order to attain a strictly

positive minimal long-run mass, the average long-run mass cannot exceed

µ/c− 1+ c. The Markov process we construct in part (ii) approximates this
upper bound. This means that among all trainer strategies that attain the

minimal long-run mass of µ/c−1, this process is the best in terms of average
mass.

Proof of part (i) of Proposition 2
Let p be the joint invariant distribution over (d,m) that results from the

trainer’s strategy and the agent’s best-replying strategy. Recall that the

existence of such a distribution is a constraint on the trainer’s problem. We

abuse notation and write p(d), p(m) and p(d | m) to represent marginal and
conditional distributions induced by p. As in the myopic-agent case, we first

derive an upper bound on the expected mass according to p, which we then

use to derive the upper bound on the minimal long-run mass. Finally, we

show how to implement this upper bound.

In Section 2, we saw that the trainer can implement a minimal long-run

mass of at least µ (by playing d = µ at every period). Therefore, we take it

for granted that the minimal value of m in the support of p is at least µ ≥ 1.
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Step 1: p(d > 0) ≥ c

Consider the following deviation by the agent. Pick some period-t history for

which mt−1 ≥ 1 is at the lowest recurrent value according to p. Therefore,
mt = m ∈ {mt−1,mt−1+1}. At this history, the agent deviates tom′t = m−1.
Subsequently, the agent behaves according to his original strategy as if the

deviation did not occur.

This deviating strategy induces an invariant distribution p′ such that for

every (d,m) in the support of p, p′(d,m − 1) = p(d,m). Therefore, the

deviation saves c at every period, but raises costs by one unit per period

whenever d ≥ m under the original strategy. In order for this deviation

to be unprofitable for an arbitrarily patient agent, it must be the case that

p(d ≥ m) ≥ c. Since m > 0 with probability one, p(d > 0) ≥ p(d ≥ m),

hence p(d > 0) ≥ c. �

Step 2: The expectation of m according to p is at most µ/c− 1 + c.
Assume the contrary. Then, the agent’s average long-run cost exceeds

c · [µ
c
− 1 + c] = µ− c(1− c)

Now consider a deviation to the following strategy. Descend from m0 to

m = 0, and then implement the following rule: mt = 0 whenever dt = 0, and

mt = 1 whenever dt > 0. When the agent is arbitrarily patient, the average

long-run cost from this strategy is approximately

p(d = 0) · 0 + p(d > 0) · [c+
∑
d>0

p(d | d > 0)d− 1]

≤ p(d > 0)(c− 1) + µ

By Step 1,

p(d > 0)(c− 1) + µ < µ− c(1− c)

such that the deviation is profitable, a contradiction. �
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Step 3: The minimal long-run mass is at most µ/c− 1.
By assumption, µ/c is an integer. Therefore, µ/c − 1 + c is not an integer.

Therefore, in order for average long-run cost to be weakly below µ/c− 1+ c,
the minimal long-run mass cannot exceed µ/c−1.5 This completes the proof
of part (i). �

Proof of part (ii) of Proposition 2
Consider the trainer’s strategy that is described in the statement of part (ii).

Our objective is to show that given this strategy, there is a best-reply for the

agent that induces the following joint invariant distribution over d and m:

m = µ/c whenever s = H and m = µ/c− 1 whenever s = L.

Since the agent faces a Markovian decision problem with an extended

state space (s,m), there exists a best-reply that is Markovian with respect

to this state space. To derive such a best reply, we proceed in four steps.

Step 1: There is no best-reply in which the invariant distribution assigns
probability one to a single m.

Proof. Assume the contrary. If m < µ/c, then it is profitable for the agent

to deviate to a strategy that plays m + 1 whenever s = H and m whenever

s = L. Likewise, if m > 0, it is profitable for the agent to deviate to a

strategy that plays m whenever s = H and m− 1 whenever s = L. �

Step 2: The set of recurrent values of m (according to the unique invariant

distribution induced by the two parties’ strategies) is a set of consecutive

numbers m,m+ 1, ...,m, where m ≤ µ/c.

Proof. The agent’s sluggishness implies that if the agent visits two non-

adjacent masses m and m′, then he must also visit every m′′ between them.

Therefore, if m and m′ are recurrent, so is m′′. Suppose m > µ/c. Then,

there is a profitable deviation from the agent that instructs the agent to

remain at m − 1 whenever the original strategy instructs him to switch to

5The proof of this step utilizes the convenient assumption that µ/c is an integer. An
alternative proof that does not rely on this assumption is analogous to Step 4 in the proof
of Proposition 1.
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m. �

Step 3: There is a best-reply that induces an invariant distribution that
assigns positive probability to exactly two values of m.

Proof. Consider the invariant distribution over (d,m) induced by the trainer’s

strategy and the agent’s best-reply. By Step 1, m −m ≥ 1. If m −m = 1,

we are done. Therefore, assume m−m > 1. There are two cases to consider.

First, let α = 1 (this fits the case of c ≥ 1/2). This means that whenever
s = L, the state switches immediately to s = H in the next period. Consider

the top two values ofm in the invariant distribution, namelym andm−1. By
Step 2, m ≤ µ/c. Moreover, when s = L (at which d attains its lowest value

according to the trainer’s strategy), the agent strictly prefers m − 1 to m.
Consider some t for which mt = m (there are infinitely such periods because

m is recurrent). If st+1 = L, the agent necessarily switches to mt+1 = m− 1.
If, on the other hand, st+1 = H, we need to consider two possibilities.

• Suppose that when st+1 = H, it is not optimal for the agent to play

mt+1 = m. That is, the agent switches from mt = m to mt+1 = m− 1
for any realization of st+1. But this also means that if mt′ = m − 1
at some period t′ and st′+1 = H, it cannot be optimal for the agent to

switch to mt′+1 = m. The reason is that by revealed preference, the

agent prefers being at m− 1 to being at m when the state is H. And

since we already saw that the agent prefers being at m − 1 to being
at m when the state is L, this means that the agent will never switch

from m−1 to m, contradicting the definition of m as a recurrent state.

• Suppose that when st+1 = H, it is optimal for the agent to playmt+1 =

m. This reveals a weak preference form overm−1 when the state isH.
Therefore, there is a best-reply for the agent that prescribes mt+1 = m

whenever the extended state (st+1,mt) is (H,m − 1) or (H,m). We
already saw that when the extended state is (L,m), the agent switches
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to m − 1. Since α = 1, this means that we have constructed a best-

reply for the agent such that once he reaches m, he will only visit m

andm−1 from that period on, contradicting the assumption that there
are additional recurrent values of m.

Thus, we have ruled out the possibility that m − m > 1 when α = 1.

Now suppose β = 1 (this fits the case of c ≤ 1/2). An analogous argument
establishes that there is a best-reply for the agent that induces an invariant

distribution with only two recurrent mass values, m and m+ 1.

It follows that we can restrict attention to strategies of the agent that in-

duce an invariant distribution which assigns positive probability to precisely

two consecutive mass values, m and m− 1, where 0 < m ≤ µ/c. �

Step 4: There is a best-reply for the agent that induces an invariant distri-
bution on the mass values µ/c and µ/c− 1.
Proof. Given Step 3, it is clearly optimal for the agent to be at m when

s = H and at m− 1 when s = L. In addition, when m > µ/c (m < µ/c− 1),
the agent clearly wants to move downward (upward).

The invariant distribution of the trainer’s two-state Markov process as-

signs probability α/(α+ β) to state H and β/(α+ β) to state L. Therefore,

since the agent is arbitrarily patient, his long-run expected payoff is approx-

imately

− α

α + β
· (cm+ µ

c
−m)− β

α + β
· c(m− 1)

It is now easy to see that given that α/(α+ β) > c, this expression increases

with m, such that the optimal value of m is µ/c. The expected value of m

according to this strategy is

α

α + β
· µ
c
+

β

α + β
· (µ
c
− 1)

which is arbitrarily close to the upper bound. �
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5 Comment: The Trainer’s supmin Criterion

In our model, the trainer’s criterion is the agent’s supmin long-run mass. Al-

ternatively, we could use the long-run average mass as a criterion. However,

this criterion is less attractive in our context because it does not reflect the

idea of “preparedness” - namely, that the body should be able to perform

at a consistently high level. In particular, the average criterion allows zero

to be a recurrent value for the agent’s mass (and consequently, his level of

preparedness).

A by-product of our analysis in Section 3 is that in the myopic-agent

case, 2µ is an upper bound on the average long-run mass that the trainer

can attain. It can be shown that this upper bound can be approximated

arbitrarily well, but this must come at the price of arbitrarily long recurrent

stretches of mt = 0 realizations (which are compensated for by periods in

which mt reaches arbitrarily high values). Obviously, such paths imply that

the agent cannot consistently meet positive challenge levels. By comparison,

the process we constructed in Section 3 induces an average long-run mass of

approximately 2µ− 1
2
, and a supmin long-run mass of 2µ− 1.

A similar diagnosis pertains to the patient-agent case of Section 4. An

upper bound on the average long-run mass is µ/c. The reason is that if the

average mass exceeds this value, it implies that the agent’s average long-run

cost is above µ. However, the agent can ensure an average cost of µ by always

playingm = 0, hence a long-run mass in excess of µ/c is inconsistent with the

agent’s best-replying. We believe that as in the myopic-agent case, this upper

bound can be approximated arbitrarily well. However, as in the myopic-

agent case, it can be shown that recurrent stretches of mt = 0 realizations

are necessary for this - which, once again, fail the supmin criterion miserably.

By comparison, the process we constructed in Section 4 induces an average

long-run mass of approximately µ/c− 1 + c, and a supmin long-run mass of
µ/c− 1.
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6 Conclusion

In this paper we presented a theoretical approach to the subject of exercise

physiology, based on the view of the human body as a forward-looking opti-

mizing agent which is nevertheless constrained by sluggish adjustment. We

saw that this very sluggishness is actually a boon to physical trainers: using

a stochastic training strategy that resembles popular “periodization” tech-

niques, the trainer can achieve a significantly higher long-run muscle mass

than if the body could instantaneously adjust its mass to physical stress.

We believe that thanks to its abstraction, our modeling approach can be

extended to related problems, such as the optimal design of dynamic dieting

regimes. A model that describes the body’s metabolism as a consequence

of dynamic sluggish optimization with rational expectations may shed light

on prevalent dieting programs such as carb cycles. We hope to pursue this

approach before the next pandemic.
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