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Abstract

We consider a decision-maker sequentially choosing which task to attend to when
payoffs depend on both the chosen and unchosen tasks. We show that when tasks
are substitutes (complements) such that the flow payoffs are a sum (product) of the
tasks’ outputs, the optimal policy is an index policy, generalizing the independence
of irrelevant alternatives (IIA) property known in the classic multi-armed bandit
problem. We illustrate the usefulness of our model through several applications,
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1 Introduction

As individuals, we are constantly engaged in scheduling tasks and in deciding when to
switch from one activity to another. Oftentimes, we are affected by the outcomes of
tasks even in periods in which we do not attend to them. For instance, the success of a
manager who allocates his time between different teams/departments under his control
depends on the overall performance of all of them. While the manager is attending to one
of his teams, his overall success continues to depend on the performance of all the other
teams that are not currently receiving his attention. Similarly, due to time constraints,
consumers with monthly payments to multiple services (internet, cell phone coverage,
gyms, streaming, etc.) can typically exert effort in lowering the cost of only one service
at a time, and hence need to choose which service to focus on at any given point in time.
While the consumer is engaged in lowering the cost of one service, his overall expenses
are still affected by those of the remaining ones.

Put differently, many attention allocation problems have the feature that in each
period, the decision-maker receives a payoff from each available activity – not just the
one he is attending to. The goal of this paper is to develop a methodology to analyze
such decision problems and to illustrate its applicability.

We consider a decision-maker (DM) who faces a finite number of tasks/alternatives,
and in each period must decide which task to choose. The per-period payoff from a given
task depends on its state and on whether or not the DM attends to it in the current
period. The state of each given task may change only during those periods in which
the DM attends to the task, in which case its new state is drawn from a distribution
that depends on the task’s previous state. The DM’s overall flow payoff is a function
of all of the task-specific per-period payoffs. This captures environments where several
activities generate a payoff even when left unattended, as well as environments in which
the flow payoff is generated only from the chosen task, but where this payoff depends on
the states of the unchosen tasks.

We focus on two polar cases: the case of substitute tasks, in which the DM’s flow
payoff equals the sum of outputs of all of the tasks (both chosen and unchosen), and the
case of complementary tasks, in which the DM’s flow payoff equals the product of all of the
tasks’ outputs. In both cases, the classic Gittins index solution is not applicable since the
DM’s flow payoff depends on the states of all tasks.1 Nevertheless, we establish that the

1That is, such problems do not fall into the classic paradigm of the multi-armed bandit problem, in
which the DM receives a payoff only from the arm he pulls and only when he pulls it.
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DM’s optimal strategy is characterized by an index policy: there exists a function that
assigns to each task a score, which depends only on the characteristics of that particular
task (and, in particular, is independent of any information about the other tasks), such
that in each period, given the states of all tasks, it is optimal to pick the task with the
highest current score.

Our analysis begins with the case of substitute tasks. We characterize the optimal
policy, which is based on indices that account for the externality a task imposes on others.
Using this characterization, we also show that—owing to the additive separability of the
substitute case across tasks and across periods—the DM’s problem can be reformulated
in a way that admits the standard Gittins index solution. The idea is to think of the
payoff from choosing a task as also including the expected discounted sum of payoffs in
future periods, assuming that the task will not be selected again. The attention policy
induced by the Gittins index of this reformulated decision problem coincides with the
policy induced by our index.

We illustrate the applicability of our index policy for the case of substitute tasks
through a number of examples.

On-the-job training. An instructor/supervisor faces a set of identical workers and
must decide in each period which worker to guide. The workers are initially unproductive,
but their productivity stochastically improves when given guidance. Applying our index
policy, we characterize the optimal guidance strategy.

Repeated bargaining. Each period a firm has to assign a project to one of two
contractors. The surplus generated by a contractor is a function of his productivity,
which increases with the number of projects assigned to him. The division of this
surplus between the firm and the chosen contractor is determined according to the Stole
and Zwiebel (1996b) reduced-form bargaining solution, which takes into account the
productivity of both contractors (i.e., the chosen and the unchosen). The firm then faces
the following trade-off: remaining with the same contractor increases his productivity,
but can also raise his share in the surplus. We show that the firm’s decision problem can
be formulated in a way that fits into our framework. Applying our solution yields that
depending on the discount factor and the firm’s (exogenous) bargaining power, the firm
either switches between contractors each period, or it remains with the same contractor
in all periods. We derive a condition characterizing which case is optimal, as a function
of the parameters.

Career paths and mobility between sectors. We extend the classic literature on dynamic
occupational choice (most notably, Jovanovic, 1979; Miller, 1984) by allowing the transfer
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of human capital investment across occupations. Motivated by the observation that the
career paths of many academics and professionals (lawyers, economists, engineers) often
involve switching between positions in the private and the public sector, we consider the
problem of a DM who in each period must choose between each of the sectors. We assume
that the productivity of a worker in a given period is the sum of the human capital he
accumulated in the current sector plus a proportion of the human capital he accumulated
in the other sector. Each sector is then characterized by a parameter that captures the
fraction of accumulated human capital that is transferable to the other sector. Thus,
moving to a sector with a lower current payoff may be interpreted as an investment in
human capital that increases future payoffs. Focusing on a simple parametric model of
human capital accumulation in each sector, we show the conditions under which the DM
chooses to begin his career in the public sector, and those under which he instead chooses
to start in the private sector, switching for a brief stint in the public sector after having
accumulated enough human capital.

We then turn our attention to the case of complementary tasks. This case captures
environments where a team of agents works on a joint project and, in order to complete
the project, all agents must succeed in their task. This case also fits environments in
which several factors of production must be developed, and the total production has the
Cobb–Douglas form.2

The index policy for complementary tasks is significantly different from the one for
substitute tasks. In particular, two indices, each of which induces a distinct ranking, must
be considered. In order to determine which of the indices must be used to evaluate the
choice of a given task, we first need to check whether there exists a (possibly stochastic)
stopping time such that the expected discounted output at the stopping time is higher
than the current output. We refer to tasks for which the answer is affirmative as
“augmenting.” An augmenting task is always chosen over a nonaugmenting one and,
among tasks of the same status (augmenting or nonaugmenting), the selection is made
according to their associated index.

Unlike the case of substitutes, it remains an open question whether there exists a way
to reformulate the decision problem such that applying the Gittins index policy to the

2At first glance, one might think that a monotonic transformation (e.g., log(·)) on the periodic payoff
function might yield an equivalent decision problem in which the periodic payoffs are additive in the
states. However, this intuition is incorrect, as the objective being maximized is the discounted sum of
payoffs, and hence a monotonic transformation on the objective function is different than a monotonic
transformation on the periodic payoff function. Indeed we show that the dynamics under the optimal
policy are very different under the two cases of substitutes (additive periodic payoff function) and
complements (multiplicative periodic payoff function).
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reformulated problem induces the optimal attention policy.
To illustrate the case of complementary tasks, and how it differs from the case of

substitutes, we analyze the following examples.
On-the-job training. A pair of agents work on a joint project that comprises two

independent tasks. The project is completed if and only if each agent completes his task.
Each agent is able to complete his task with certainty after two periods of guidance by
the DM. While one worker improves his productivity after a single period of guidance,
the second worker makes no intermediate improvement. We characterize the optimal
training strategy and show that unlike in the case of substitute tasks, it depends on the
discount factor.

Developing multiple complementary attributes. A firm is developing two complemen-
tary attributes of a single product (say, speed and accuracy), and needs to decide which
attribute a team of workers should focus on each period, taking into account that each
period there is a fixed probability that the final product will need to be introduced on
the market (because of competitive pressure). While the level of one attribute increases
every time it is worked on, the level of the other attribute requires additional periods of
attention before it increases in value. Assuming the firm’s profit equals the product of
the two attributes’ levels, we examine how the sequencing of attention is affected by the
probability that the product needs to be offered on the market (which captures the level
of competition).

Supervising agents with stochastic costs. There are two agents who jointly work on a
project. Each agent is in charge of a task, and the project is completed successfully if
and only if both agents successfully complete their respective task. A principal needs to
decide each period which agent to supervise. When supervised, an agent completes his
task in the project, but when left unsupervised, the agent works if and only if he perceives
the cost of effort to be lower than some threshold. Cost perceptions are stochastic, and
each agent starts with an initial cost threshold that can change with the number of times
he was supervised. We derive the optimal supervision policy when one agent always
shirks without supervision, while the cost threshold of the second agent increases with
supervision.

The two cases we study are nested within a broader class of problems in which the DM
maximizes a discounted expected generalized mean of payoffs from all tasks. We take a
preliminary step towards characterizing the solution to this entire class by focusing on the
two extremes: the arithmetic and geometric means. As demonstrated by our examples,
these two cases encompass a wide variety of economically relevant environments to which
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our index policies can be applied.
The remainder of the paper is organized as follows. The next section reviews the

related literature. Section 3 presents the model of substitute tasks. The optimal strategy,
which takes the form of an index policy, is characterized in Subsection 3.1 and illustrated
in Subsection 3.2. Section 4 presents the model of complementarities between tasks,
derives the optimal policy in Subsection 4.1 and illustrates its working in Subsection 4.2.
Concluding remarks are given in Section 5. All omitted proofs are in the Appendix.

2 Related literature

The problem of allocating time/attention between tasks has been previously studied in
the literature under different frameworks. In a series of papers, Coviello et al. (2014,
2015) study the problem of a DM who faces a growing queue of tasks that arrive at an
exogenous rate. In their 2014 paper, the authors characterize the production function,
which relates the output rate to the effort rate (which governs completion time) and the
activation rate (at which tasks are started). Their 2015 paper applies this production
function to a dataset of judges’ handling of court cases to estimate the effect of increased
case load. Bray et al. (2016) model how a judge schedules cases as a classic multi-armed
bandit problem, and argue that prioritizing the oldest hearing (case) is optimal when the
case completion hazard rate function is decreasing (increasing). Using data on Italian
judges, they estimate that a switch from prioritizing the oldest hearing to prioritizing
the oldest case greatly decreased average case duration.

The present paper complements the work of these authors by considering a different
framework where the set of tasks is given, and the DM decides which task to attend to
in each period, taking into account how his payoffs depend on both chosen and unchosen
tasks. Our main contribution is a characterization of the DM’s optimal strategy when
tasks are substitutes and complements.

In their classic paper, Radner and Rothschild (1975) study the problem of a DM
who needs to allocate a unit of attention in each period among a given set of tasks.
The output of an attended (unattended) task increases (decreases) as a function of the
amount of effort allocated to it. Instead of deriving the optimal strategy, the authors
compare the survival probability of several heuristics (the probability that the outputs of
all tasks remain above some threshold).

Our model is naturally related to the multi-armed bandit framework, which has been
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widely applied in a variety of fields in economics.3 Due to the dependence of payoffs on
the states of all tasks, however, our model does not fall under this classic framework.
This feature also distinguishes our analysis relative to the classic literature on “learning
by experimentation” (e.g., Keller et al., 2005). The DM’s optimal policy in our problem
takes the form of an index policy, and in this sense generalizes the key IIA property that
has contributed to the applicability of the classic multi-armed bandit framework.

While our model is motivated by environments where learning about alternatives can
be linked to the flow payoffs they generate, it is related to a small literature studying
the problem of a DM that acquires information about multiple attributes of an object
before deciding between the object and an outside option. Since the value of the object
depends on all its attributes—whether inspected or not—this decision problem resembles
the one we study. However, it does not fit into our framework because the final payoff
of the DM is the maximum of the object’s expected value and the value of the outside
option. In particular, it is not known whether the optimal strategy in this environment
admits an index policy.

Notable examples in this literature include Klabjan et al. (2014), who study a DM
inspecting a good’s attributes before choosing between the object and an outside option.
The DM’s payoff from the object is a weighted average of the attributes’ values, of which
he is initially uninformed. He can inspect attributes at a cost, thereby learning their
value, before making a decision. Eliaz and Frug (2018) study a related problem, where a
seller decides which attributes of an asset to inspect before proposing a price to a buyer,
who does not observe the outcome of the seller’s inspections.

Several recent papers have studied the problem of a DM that gradually acquires costly
information about a set of options before stopping and choosing one of them. These
include Ke et al. (2016), Fudenberg et al. (2018), Che and Mierendorff (2019), Ke and
Villas-Boas (2019), and Liang et al. (2021). A key difference between these works and
ours is that the DM’s payoff in our model is a function of the states of all alternatives,
whether chosen or not. Additionally, in contrast to our framework, the optimal strategy
in these works does not take the form of an index policy.4

Similar to the classic multi-armed bandit framework and the papers discussed above,
in the present paper the set of alternatives among which the DM allocates attention
is fixed ex ante. Fershtman and Pavan (2020) analyze a model where, in addition to

3See Bergemann and Valimaki (2008) for an excellent survey.
4Gossner et al. (2020) also a study a problem in a which a DM sequentially learns about options

before choosing one of them. They assume an exogenous stopping rule, which implies that the optimal
learning strategy follows an index policy.
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exploring alternatives already in the DM’s consideration set, the DM can choose to search
for additional alternatives in response to information gathered about existing ones.

3 Attention scheduling with substitutes

There are n alternatives that require the attention of a DM. Each period, t = 0, 1, ...∞,
the DM can allocate attention to at most a single alternative. The DM can also choose
not to allocate attention to any alternative. In each period t, if the DM focuses on
alternative i, his payoff is

Ut(x1,t, ..., xn,t) = ui(xi,t) +
∑
j 6=i

vj(xj,t),

where ui and vi are bounded functions, and xi,t ∈ Xi represents the period-t state of
alternative i. Each Xi is an arbitrary state space. The function ui represents the payoff
from alternative i at the time the DM allocates attention to it, while vi is the passive
payoff in periods in which the DM allocates attention to another alternative. As we will
see in the applications of Section 3.2, vi can also capture an (additive) externality that
unchosen alternatives impose on the chosen alternative in situations where an alternative
generates a payoff only when chosen.

The state of an alternative changes only in a period in which the DM allocates
attention to it. Specifically, given xi,t, if the DM allocates attention to alternative i
in period t, the alternative’s next state xi,t+1 is drawn from the distribution Fi(·|xi,t)
defined on Xi, and the states of the other alternatives remain unchanged, xj,t+1 = xj,t.
For example, the change in an alternative’s state may capture investment, learning about
an unknown characteristic, learning-by-doing, or habit formation.

An attention policy Γ specifies, given the current state of all alternatives (x1, ..., xn),
which alternative (if any) receives attention.5 The DM wishes to maximize the expected
discounted stream of payoffs. An optimal attention policy is therefore a policy that
maximizes

E

(
∞∑
s=0

δsU(x1,s, ..., xn,s)|x1,0, ..., xn,0

)
.

5The possibility of not allocating attention to any alternative can be captured by introducing a
fictitious alternative whose state remains constant and for which the functions u and v are constant at
zero.
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To ease exposition, we assume that there is no direct cost for allocating attention to
an alternative other than the opportunity cost of allocating attention to a different
alternative and discounting.

3.1 The optimal policy

We now characterize the DM’s optimal attention policy. Consider an alternative i that
is in state xi in some unspecified period. With a slight abuse of notation, we denote
by x+τ the (possibly random) state of that alternative following τ periods of receiving
attention. We use this notation so that we do not need to specify the particular time
period in which the alternative was in the initial state xi. Using this notation, for any
state xi of alternative i, given a (realization-dependent) stopping rule τ , define

ai(xi, τ) ≡ E
(
δτvi(x

+τ
i )|xi

)
− vi(xi). (1)

The first component, E
(
δτvi(x

+τ
i )|xi

)
, represents the expected discounted passive payoff

of alternative i after τ periods of receiving attention, starting from state xi. Thus, for a
given stopping rule τ , the function ai(xi, τ) captures the expected discounted increase in
the passive payoff of alternative i, starting at xi and stopping according to the stopping
rule τ .

Given the state xj,t ∈ Xj of alternative j in period t, define an index

Ij(xj,t) ≡ supτ

{
(1− δ)E

(∑τ−1
s=0 δ

suj(xj,t+s)
)

+ aj(xj,t, τ)

E (1− δτ )

}
, (2)

where the sup is taken over all (possibly stochastic) stopping rules. The index Ij is a
function only of the state of alternative j, and is independent of any information about
the other alternatives. Note that when v ≡ 0 for all the alternatives, the payoff in each
period is a function of only the state of the alternative that receives attention, such that
(2) reduces to the classic Gittins index of Gittins and Jones (1974).

Standard dynamic programming results imply that a stopping rule τ ∗j (xj) attaining
the supremum in (2) satisfies the following useful property: beginning at state xj, τ ∗j (xj)

is the first time at which the index becomes smaller than Ij(xj). That is, τ ∗j (xj) is
equal to the first period t > 0 such that Ij(x+tj (xj)) ≤ Ij(xj), where x+tj (xj) denotes
alternative j’s (stochastic) state after t periods of attention, starting at state xj (see,
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e.g., Mandelbaum, 1986).6 This property will be useful for deriving the index in practice
(and will be used in the applications below).

Claim 1. τ ∗ is a stopping rule that attains the supremum in (2) if and only if it satisfies

min{t > 0 : Ij(xj) ≥ Ij(x
+t
j (xj))} ≤ τ ∗j (xj) ≤ min{t > 0 : Ij(xj) > Ij(x

+t
j (xj))}.

In other words, it is without loss to assume that τ ∗j (xj) stops once a state is reached
for which the index is equal to Ij(xj). Furthermore, once a state is reached for which the
index is strictly below Ij(xj), τ ∗j (xj) stops immediately.

To illustrate the intuition for this property, suppose that the state of alternative
j evolves deterministically. Let τ̂j be a stopping rule that, given each state xj, stops
immediately when the index drops weakly below Ij(xj). That is, for all7 xj, τ̂j(xj) =

min{t > 0 : Ij(xj) ≥ Ij(x
+t
j (xj))}. Denote Dj(xj, τ) =

∑τ−1
s=0 δ

s and

Nj(xj, τ) =
τ−1∑
s=0

δsuj(x
+s
j ) + δτvj(x

+τ
j )− vj(xj).

Suppose by way of contradiction that Ij(x+τ̂j ) < Ij(xj), but that τ̂ < τ ∗. That is,
stopping under τ ∗ does not occur immediately after reaching a state for which Ij is
strictly smaller than Ij(xj). Then

Ij(xj) =
Nj(xj, τ

∗)

Dj(xj, τ ∗)
=
Nj(xj, τ̂) + δτ̂N(x+τ̂j , τ ∗ − τ̂)

Dj(xj, τ̂) + δτ̂D(x+τ̂j , τ ∗ − τ̂)
(3)

and

N(x+τ̂j , τ ∗ − τ̂)

D(x+τ̂j , τ ∗ − τ̂)
≤ Ij(x

+τ̂
j ) < Ij(xj), (4)

where the first inequality follows from the definition of the index Ij. But (3) and (4)
together imply that N(xj ,τ̂)

D(xj ,τ̂)
> Ij(xj), which yields the desired contradiction. An analogous

argument shows that τ ∗ cannot stop before the index drops weakly below Ij.
Given the index defined in (2), we define the following attention policy.

6Note that allowing for infinity as a possible value of the stopping time, the supremum in the definition
of (2) is attained; that is, an optimal stopping rule exists (see Puterman, 2014).

7To ease the exposition, the notation will omit below the dependence of x+sj and of the stopping
rules τ∗ and τ̂ on the state xj .
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Definition 1. Denote by Γ∗ an attention policy that allocates attention in each period to
the alternative with the highest index.8

Under this attention policy, the decision in each period boils down to a simple
comparison of independent indices.

Theorem 1. Γ∗ is an optimal attention policy in the model with substitute alternatives.

The proof builds on an interchange argument due to Gittins and Jones (1974). It suffices
to show that any policy π0 that differs from Γ∗ in period 0 and subsequently coincides
with it attains a discounted expected payoff no greater than that of Γ∗ To show this,
starting with any such arbitrary policy π0, we construct a sequence of modifications of
π0, (π1, π2, ...), such that each modified policy πk coincides with Γ∗ for at least the first k
periods and attains a weakly higher expected payoff than its predecessor, and furthermore,
the expected discounted payoff under πk converges to the expected discounted payoff
under Γ∗ as k →∞.

In the appendix we give a unified proof of the optimal attention policy for both the
case of substitutes (Theorem 1) and complements (Theorem 2) since both theorems use
the same methodology outlined in the previous paragraph. In some steps of the proof,
the details differ depending on whether the alternatives are substitutes or complements.
In these steps, we describe which argument to use for each of the two cases.

Even though the DM’s flow payoff depends on the states of all alternatives—the one
he is attending to and all the others—the above result establishes that in each period the
DM optimally chooses the alternative with the highest index. This therefore generalizes
the IIA property known in the classic bandit framework (that is, the DM prefers to
attend to alternative a rather than alternative b in a particular period independently
of the other alternatives). The indices capture both the expected stream of payoffs u
associated with allocating attention to an alternative, but also the payoffs v that the
other alternatives generate when they do not receive attention.

The fact that the optimal policy takes such a simple separable form is important for
applications. It is useful both for deriving properties of the dynamics and comparative
statics under the optimal policy and for computational purposes. Without such separabil-
ity, the optimal policy, in principle, could still be computed using dynamic programming.
However, this would require strong assumptions on the state variables in order to simplify

8In the case of ties between indices, any tie-breaking rule may be specified.
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computation due to the “curse of dimensionality.” Rearranging (2) yields the following
alternative representation of our index:

I(xj,t) = supτ


(
E
(∑τ−1

s=0 δ
suj(xj,t+s)

)
E(
∑τ−1

s=0 δ
s)

)
︸ ︷︷ ︸

(a)

−

(
vj(xj,t)− E (δτvj(xj,t+τ ))

(1− δ)E(
∑τ−1

s=0 δ
s)

)
︸ ︷︷ ︸

(b)

 .

The indices therefore maximize the difference between two components: (a) the expected
discounted payoff per unit of expected discounted time, and (b) the discounted continua-
tion value of the expected change in the passive payoff per unit of expected discounted
time. The first component is the one maximized by the well-known Gittins index. The
second component is new, and reflects the fact that when an alternative does not receive
attention, it continues to contribute to the overall payoff, as a function of its state.

The following example illustrates the workings of the optimal policy characterized in
Theorem 1.

Example. The output produced by a worker often depends on whether he works alone
or receives guidance from the principal. This guidance is likely to improve the worker’s
skills, thereby increasing the worker’s future productivity. Consider the following problem
in which a principal dynamically allocates his attention among workers, training them
one at a time, with the goal of maximizing the total discounted expected output they
generate.

Let a worker’s state x ∈ {0, 1
3
, 2
3
, 1} denote the worker’s skill level. Assume that

when a worker is in state x, he produces x if he receives attention and only x2 if he
works alone. Training a worker in state x may affect the worker’s future productivity.
Specifically, we assume that if a worker is trained while in state x, he moves to a new
state x′ ∼ U{x, x+ 1

3
, .., 1}. For simplicity, we assume that training a worker entails no

direct costs for the principal.

Claim 2. For any δ the principal will first train workers who are in state 1
3
. Then,

if δ > δ∗ (≈ 0.62), he will train workers in state 0, followed by workers in state 2
3
.

Otherwise, he will train workers in state 2
3
before workers in state 0.

Proof: Denote by I(x, τ) the expected discounted per-period value from the stopping
rule τ at state x. The index in state x therefore satisfies I(x) = supτ{I(x, τ)}.
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In order to characterize the principal’s optimal training policy, first note that there is
no value in training a worker who is at the highest skill level, x = 1, since this would not
affect either the worker’s current or future productivity. Formally, it is easy to see that
for any stopping rule τ , I(1) = I(1, τ) = 0.

Next, by Claim 1, I(2
3
) = I(2

3
, 1); i.e., the index is supported by the deterministic

stopping rule τ = 1 (that is, τ specifies stopping after a single period, regardless of the
realization of the new state). It can easily be verified that I(2

3
) = 4+δ

18(1−δ) .

To derive I(1
3
), we first note that, again by simple calculation, I(1

3
, 1) = 6+5δ

27(1−δ) . For
all δ ∈ (0, 1), I(1

3
, 1) > I(2

3
). Therefore, I(1

3
) > max{I(2

3
), I(1)} and hence, again by

Claim 1, I(1
3
) = I(1

3
, 1).

We have therefore shown that, for all δ ∈ (0, 1),

I(
1

3
) > I(

2

3
) > I(1) = 0, (5)

which means that among those workers who have obtained a positive skill level x > 0,
priority is given to the least-skilled workers.

We now turn to state x = 0. As before, we begin by looking at the simple deterministic
stopping rule τ = 1, which yields I(0, 1) = 7δ

27(1−δ) . Note, however, that for all δ ∈ (0, 1),

I(0, 1) < I(
1

3
). (6)

Suppose that it were optimal for the principal to stop immediately upon reaching state
1
3
. By Claim 1, this would imply that I(1

3
) ≤ I(0), and hence, by (5), I(0) ≥ I(x) for all

x > 0. But by Claim 1, this would imply that it is optimal to stop after a single period of
training, regardless of the realization of the new state. In this case, I(0) = I(0, 1) ≥ I(1

3
),

which stands in contradiction to (6). Therefore, we can conclude that, under the optimal
stopping rule, if training leads to skill level 1

3
, it is suboptimal to stop training the worker.

By Claim 1, this also implies that I(0) < I(1
3
).

Note that the principal clearly stops training upon reaching x = 1. In other words,
unlike in x ∈ {1

3
, 2
3
, 1}, the optimal stopping rule in state x = 0 is stochastic—whether

the principal stops or not depends on the realization of the next state.
As we have shown that the optimal stopping rule does not stop in state 1

3
, and

necessarily stops in state 1, it remains to check whether stopping in state 2
3
is optimal

(by Claim 1, stopping and continuing in state 0 are both optimal).
Denote by τ̂ the stopping rule by which the principal trains the worker until his skill
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strictly exceeds 1
3
, and then stops. By Claim 1, τ̂ is optimal if and only if

I(0, τ̂) ≥ I(
2

3
). (7)

Whether or not this inequality holds fully pins down the principal’s optimal training
strategy. By (5) and (6), for any δ ∈ (0, 1) it is optimal for the principal to first attend
to workers in state 1

3
. If (7) holds, the next to receive attention are completely unskilled

workers (x = 0), and lastly workers in state 2
3
. If the inequality in (7) is reversed, workers

in state 2
3
will be attended to before those in state 0.

To solve for which values of δ (7) holds, we calculate

I(0, τ̂) =
(1− δ)E(

∑τ̂−1
s=0 δ

sxs|x0 = 0) + E(δτ̂x2τ̂ |x0 = 0)

E(1− δτ̂ )
.

First, observe that xτ̂ is either 2
3
or 1 with equal probability, regardless of whether it is

reached from state 0 or from state 1
3
. Therefore, δτ̂ and x2τ̂ are uncorrelated. It follows

that E(x2τ̂ ) = 1
2
· (2

3
)2 + 1

2
· 12 = 13

18
, and hence E(δτ̂x2τ̂ |x0 = 0) = 13

18
· E(δτ̂ |x0 = 0).

Second, note that

E(δτ̂ |x0 = 0) =
1

4
δE(δτ̂ |x0 = 0) +

1

4
δE(δτ̂ |x0 =

1

3
) +

1

2
δ, (8)

where the first, second, and third summands on the RHS of (8) correspond to different
realizations of states x1 = 0, x1 = 1

3
, and x1 > 1

3
, respectively, after one period of training.

To find E(δτ̂ |x0 = 0), we first derive E(δτ̂ |x0 = 1
3
). Similar to the logic of (8), we can

write E(δτ̂ |x0 = 1
3
) = 1

3
δE(δτ̂ |x0 = 1

3
) + 2

3
δ, which gives E(δτ̂ |x0 = 1

3
) = 2δ

3−δ . Plugging
this into (8) and rearranging terms yields E(δτ̂ |x0 = 0) = 6δ

δ2−7δ+12
.

It is left to calculate E(
∑τ̂−1

s=0 δ
sxs|x0 = 0). Writing the expression in a form sim-

ilar to (8) and following the same steps as in the derivation of E(δτ̂ |x0 = 0) gives
E(
∑τ̂−1

s=0 δ
sxs|x0 = 0) = δ

δ2−7δ+12
. Substituting the derived terms into I(0, τ̂) we obtain

I(0, τ̂) =
(16− 3δ)δ

3(12− δ)(1− δ)
,

and hence (7) holds if and only if δ ≥ δ∗ ≡ 44−4
√
70

17
≈ 0.62. Note that for such values of

δ, I(0) = I(0, τ̂). Analogous calculations can be performed to derive the index for lower
values of δ; however, they are not required in order to fully understand the principal’s
training priority. 2
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We conclude this section by examining whether there exists a classic attention
allocation problem (that is, one where payoffs depend only on the state of the alternative
receiving attention) that yields the optimal dynamics that emerge in our setting. Denote
the problem described in the previous section by P , and consider the fictitious environment
P̂ in which, in each period t, the DM’s payoff is equal to

wi(xi,t) ≡ ui(xi,t)− vi(xi,t) +
δ

1− δ
(vi(xi,t+1)− vi(xi,t)) ,

where i is the alternative that receives attention in period t. In particular, in this fictitious
environment the DM’s payoff does not depend on the states of other alternatives.

Denote by {x∞j } an entire sample path of xj from its initial state onward, and denote
by {x∞j }nj=1 the collection of paths for all alternatives.

Proposition 1. For any collection of realization paths {x∞j }nj=1 and for any period t,
the same alternative receives attention in P as in the fictitious problem P̂.

The function wi can be interpreted as follows. Suppose that when a DM attends to
an alternative he gets the immediate payoff from that alternative and the discounted
expected value of the change in the stream of payoffs, assuming that the alternative is
not picked again. Thus, when the DM attends to an alternative, the payoff today from
that alternative changes from vi to ui and, from the next period on, the per-period payoff
changes from vi(xt) to vi(xt+1). The reason we can transform the original problem into
one where the classic Gittins index applies follows from the additive separability across
alternatives and across periods. Thus, for the case of substitutes, the optimal policy
may be obtained by showing indirectly that applying the Gittins index to the fictitious
problem yields the optimal policy for the original problem. We opted to establish the
optimal policy more directly via Theorem 1 in order to have comparable proofs for the
two cases of substitutes and complements. The reason is that the above mentioned
separability breaks down in the case of complementary alternatives (see Section 4). It
remains an open question whether an analogue of Proposition 1 is true for the case of
complements.

3.2 Applications

In this section, we apply our characterization of the DM’s optimal policy to several
environments.
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3.2.1 Repeated bargaining

We now demonstrate how our framework may be helpful in analyzing the dilemma often
faced by firms of whether to switch a supplier/contractor or remain with the current one.
On the one hand, repeatedly using the same supplier enables the supplier to improve over
time its process for producing the input needed by the firm. On the other hand, staying
with the same supplier may improve the supplier’s bargaining position over time, as his
level of expertise increases. Firms may differ in their solutions to this dilemma, which
raises the question of what factors favor one decision over the other. For instance, Helper
and Levine (1992) noted that in the auto industry, contracts with suppliers are typically
renegotiated each period, and while Japanese automakers tend to maintain long-term
relationships with the same supplier, American automakers often switch between different
suppliers.

Applying our framework to a simple stylized model of the firm’s decision problem,
we show that a firm either sticks with the same supplier or switches suppliers in every
period. In particular, we show that if a firm finds it optimal to switch every period, then
so will a more patient firm.

Consider a principal P and two identical agents, 1 and 2. In each period there
is a project that the principal can assign to one of the agents. When an agent is
assigned a project, the surplus he generates is a function of his current productivity. This
productivity evolves over time, such that the more projects are assigned to an agent, the
higher his productivity (possibly due to learning-by-doing). More specifically, we assume
that the surplus from the k-th (k ≥ 1) assigned project (the agent’s productivity in state
k) is equal to

∑k−1
n=0 θ

n, where θ ∈ (0, 1).

The surplus from a project is divided between the principal and the agent to whom
the project is assigned, and the division is determined through bargaining (the nature
of which is described below). At the start of each period, the principal simultaneously
bargains with each of the agents on the division of surplus in case the project is assigned
to that agent. Given the bargaining outcome, the principal assigns the project to one
of the agents and payoffs are realized. P seeks to maximize the discounted sum of his
payoffs with the discount factor δ.

Following Stole and Zwiebel (1996b), we take a reduced-form approach to modeling
the bargaining between P and the agents. That paper characterizes a profile of payoffs
that is stable in the following sense: prior to production, no individual agent can benefit
from renegotiating with the principal, and the principal cannot benefit from renegotiating
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with the other agent. In all such negotiations, the principal and the agents split the
joint surplus from their relationship according to their respective (exogenously given)
bargaining powers, and relative to their respective outside options. Following the approach
of Stole and Zwiebel (1996b), we assume that agreements are non-binding in the sense
that in case of disagreement with agent i, the principal can renegotiate with j, and
players anticipate the possibility of such changes following disagreement. The outside
option of each agent is normalized to zero. This would also be the outside option of
the principal if there were only a single agent. But in the presence of two agents, the
outside option for the principal when bargaining with i is the outcome of bargaining
with the other agent, j, in the absence of agent i. Stole and Zwiebel (1996a) show that
the stable payoff profile coincides with the unique subgame perfect equilibrium outcome
of an extensive-form bargaining game.

We embed the characterization of stable payoff profiles due to Stole and Zwiebel
(1996b) into our dynamic decision problem, such that if P assigns the project to agent i
in period t, the payoffs to P and i are given by the corresponding stable payoff profile.
Formally, let β ∈ [1

2
, 1] be P ’s bargaining power, so that each agent’s bargaining power is

1− β. To guarantee the validity of the bargaining solution (described below), we assume
β ≥ θ.9 Suppose that the project is assigned to agent i with productivity qi. If there
were no agent i, and P were to bargain only with j, the surplus to be divided would be
qj with outside options of zero for both P and j. This would yield a payoff of βqj to P
and (1− β)qj to agent j. It follows that in the solution to the bargaining between P and
agent i with productivity qi, the payoff to each side h ∈ {P, i} is defined as follows:

[h’s outside option] + [h’s bargaining power]

× (surplus− [P ’s outside option]− [i’s outside option]) .

Hence, P ’s payoff is βqi + β (1− β) qj, while i’s payoff is (1− β)qi − β (1− β) qj. Note
that a necessary condition for this solution to be valid is that at any history, (1− β)qi −
β (1− β) qj ≥ 0. Otherwise, the bargaining solution is invalid. We can rewrite this
condition as

qi
qj
≥ 1− β. (9)

When (9) is met, although the payoff in every period is obtained only from the selected
supplier in that period, the functional form of the payoff allows us to apply Theorem 1.

9If β < θ, then inequality (9) defined below will be violated in some cases.
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Specifically, setting ui(qi) = βqi and vi(qi) = β (1− β) qi translates the problem into our
general form. Intuitively, the “passive payoff” vj(·) captures the externality of supplier j
(which depends on j’s productivity) in periods when i is chosen.

As long as P does not have all the bargaining power, he benefits from a relatively high
outside option when bargaining with a supplier. On the one hand, this may motivate
P to frequently switch between suppliers so as to maintain a high outside option with
each. On the other hand, it may create an incentive to stick with one supplier for some
time, enabling that supplier to increase his productivity, and then capitalize on this
improvement by switching to the other supplier with an improved outside option. The
next result shows that P either goes back and forth between the suppliers in each period
or remains with the same one throughout, and derives a condition characterizing which
policy is optimal as a function of the parameters.

Proposition 2. It is optimal for P to assign the project to a different agent in each
period if

δ ≥ β

1− θ(1− β)
. (10)

Otherwise, it is optimal to assign the project to the same agent in all periods.

Note that if P has full bargaining power (β = 1), it is optimal for him to choose a
supplier and stick with him in all periods. However, when β < 1, the extent to which the
principal can capitalize on the improvements in a supplier’s productivity depends on his
outside option, creating the incentive to switch between the suppliers. As can be seen in
(10), the smaller P ’s bargaining power (β) or the slower the suppliers’ improvement rate
(θ), the stronger P ’s incentive to switch becomes, and therefore the less patient P must
be in order for the strategy of continually switching between suppliers each period to
become optimal.

The result suggests a possible channel through which greater bargaining power on the
side of the firm (and/or a sufficiently fast learning-by-doing on the side of the suppliers)
gives rise to the emergence of long-term exclusive relationships.

3.2.2 Career paths and mobility between sectors

The multi-armed bandit problem has been a natural framework for studying the dynamics
of occupational choice. In an influential paper, Jovanovic (1979) uses a multi-armed
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bandit problem to study a model in which an individual sequentially chooses employment
among multiple firms, and learns through specific experience how suited he is to a
given job. The individual’s optimal policy yields a decreasing hazard: the conditional
probability of turnover falls as tenure increases.10 Intuitively, the more experience the
individual accumulates in a particular job, the more precise is his assessment of his
competence in this job. Therefore, new information is less likely to affect this assessment
and therefore less likely to cause the individual to leave his job. Miller (1984) enriches
this model by introducing ex-ante heterogeneity in jobs, using the multi-armed bandit
problem to characterize the dynamics of optimal job choice. Since the value of job-specific
experience varies across jobs, jobs yielding riskier (but potentially higher) returns are
experimented with earlier. Young, inexperienced workers therefore experiment more with
such risky jobs.

In the above papers, an individual’s expertise in a given job has no bearing on the
returns from other jobs. Our framework enables us to extend the classic literature on
dynamic occupational choice by allowing transfer of human capital across jobs. The
extent to which accumulated human capital is transferable jobs is relevant for individuals’
decisions to switch jobs between sectors and, in particular, between the private and
public sectors. For instance, it is fairly common for academics and professionals (e.g.,
lawyers, accountants, economists, engineers) to switch from private firms to government
departments/agencies (which oftentimes involves a salary cut) and then switch back to
the private sector.

The following simple example illustrates how career paths that display these move-
ments between sectors are captured by our framework. In each period, an individual
can work in one of two sectors, A or B. In each period that he works in a sector, the
individual accumulates human capital (measured in monetary units). A fraction of that
human capital is transferable to the other sector. The individual’s per-period payoff
is equal to the accumulated human capital in the current sector plus the transferable
portion of the human capital that he accumulated in the other sector.

The initial human capital in sector A is zero and each period of experience in that
sector increases the human capital by r > 0. After a total of T periods of experience (not
necessarily consecutive) in sector A, the total human capital reaches its maximal level of
Tr. That is, denoting by uA(s) the total human capital accumulated in sector A after s
periods of experience, we have uA(s) = (s+ 1)r in every state s < T, and uA(s) = Tr for

10The relationship between job-specific skills and turnover decisions has been central to the economics
of labor mobility since the work of Becker (1962), Mincer (1962), and Oi (1962).
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all s ≥ T . Not all of the human capital accumulated in sector A is directly transferable
to sector B. Specifically, if an individual with a total experience of s periods in sector A
decides to switch to sector B, then only a portion α of his accumulated human capital
is added to his accumulated human capital in the new sector. This transfer of human
capital is modeled via the function vA, such that vA(s) = αsr, where α ∈ (0, 1) is the
human capital that is transferred to sector B when the individual switches to that sector
after accumulating s ≥ 0 periods of experience in sector A.

To simplify the analysis, we assume that from the very first period of work in sector
B, the human capital in that sector remains constant at b > 0, and that a portion β of it
is transferable to sector A. Thus, uB(s) = b for every s, while vB(0) = 0 and vB(s) = βb

for s > 0 where β ∈ (0, 1).
Our objective is to illustrate that one important reason for switching sectors is to

accumulate human capital that can be useful in another sector. For instance, a law
graduate may enhance his future productivity in a private law firm by first starting out
working in a public defender’s office. An alternative career path may begin in a private
law firm, followed by a move to the justice department, and then a return to a more
senior position in a private law firm. To highlight the role of the transferable human
capital, we assume that there is no uncertainty.11

To fully characterize the optimal career paths, we will use the following notation:

A0 =
r

1− δ
− rTδT (1− α)

1− δT
; A1 = (1− α) · Tr

B0 = b · 1− δ(1− β)

1− δ
; B1 = (1− β) · b.

The following result provides necessary and sufficient conditions for each possible
optimal career path, when the individual is sufficiently patient.

Proposition 3. Assume that δ ≥ (1−α)T−1
(1−α)(T−1) . The optimal career paths are characterized

as follows.

(A) It is optimal to work only in A if and only if A1 ≥ B0.

(B) It is optimal to work only in B if and only if B1 ≥ A0.

(AB) It is optimal to start a career in A and then move to B and remain there if and
only if A0 ≥ B0 and B1 ≥ A1.

11The model can be extended to allow for the combination of both learning about the quality of
matches and transferable human capital.
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(BA) It is optimal to start a career in B and then move to A and remain there if and
only if B0 ≥ A0 and A1 ≥ B1.

(ABA) It is optimal to start a career in A, then move to B, and then return to A and
remain there if and only if A0 ≥ B0 ≥ A1 ≥ B1.

(BAB) It is optimal to start a career in B, then move to A, and then return to B and
remain there if and only if B0 ≥ A0 ≥ B1 ≥ A1.

Thus, our simple model admits several possible career paths. In particular, it
accommodates career paths where the individual switches sector at most twice during
his career. The contribution of the proposition is to give the precise conditions on the
model’s primitives that correspond to each possible path. The condition on the discount
factor ensures that the index of sector A is minimal when the individual reaches the
maximal human capital in that sector.

As a corollary, the above result also offers the following simple characterization of the
individual’s long-run occupation: in the long run, it is optimal for the individual to work
in sector A if and only if

Tr

b
≥ 1− β

1− α
.

Hence, under the maintained assumption on δ, the sector where the individual will
eventually work is determined by comparing the ratio of the long-term accumulated
human capital in the two sectors with the ratio of the fraction of non-transferable human
capital in the sectors.

One of the career paths described in the proposition consists of the individual
switching to a stint in the public sector only after reaching a senior position in the
private sector. This career path is consistent with the finding by Su and Bozeman
(2009) that the probability of switching to the public sector is much higher for those who
held a managerial position in their previous private sector job than for those who held
professional and technical positions.

More generally, the framework allows us to extend the classic model of dynamic
occupational choice (Jovanovic, 1979; Miller, 1984) to one that reflects the “skill-weights
approach” introduced in Lazear (2009). This approach views skills as general, but assumes
different jobs attach different weights to these skills. In such a model, the dynamics of
occupational choice are driven by the combination of learning and the applicability of
accumulated experience across jobs.
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4 Attention scheduling with complementarities

In this section, we modify the model in Section 3 such that the DM’s flow payoff is a
product of the functions ui(·) and vi(·) of the alternatives, rather than their sum. That
is, in each period t, if the DM chooses alternative i, his payoff is

Ut(x1,t, ..., xn,t) = ui(xi,t)
∏
j 6=i

vj(xj,t),

where ui and vi are bounded positive functions, and xi,t ∈ Xi continues to represent the
period-t state of alternative i.12 Each Xi is an arbitrary state space.

This version of the model allows us to capture the problem of dynamically allocating
attention among alternatives that are complements, rather than substitutes.13 For
example, the operation of an organization’s separate divisions may involve various
complementarities, such that if one of them is too far behind, the organization suffers as
a whole. The case of complementary alternatives also fits situations in which a manager
supervises a team that works on independent components of a single project, such that
the project is completed successfully if and only if each component of it is completed
successfully. In addition, this case can also address the problem of a firm producing a
good according to a Cobb–Douglas production function

Ut = ALβtK
α
t

that needs to decide in each period whether to invest in labor (L) or capital (K) with
the goal of maximizing its expected discounted production.

4.1 The optimal policy

In contrast to the substitutes model of Section 3, characterizing the optimal policy for
this problem requires making a distinction between the states of an alternative for which
allocating attention to it is “augmenting,” and ones in which it is not.

Definition 2. Say that a state xi is augmenting if there exists a stopping time τ such
12As in the substitutes case, the possibility of not paying attention to any alternative can be captured

by introducing a fictitious alternative whose state remains constant and for which the functions u and v
are constant at 1.

13As discussed in the Introduction and illustrated in Section (4.2.1), the problem with complementarities
cannot be converted into one with substitutes by taking a log transformation.
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that ai(xi, τ) ≡ E
(
δτvi(x

+τ
i )|xi

)
− vi(xi) > 0. For each alternative i, denote by Ai ⊆ Xi

the set of states that are augmenting.

In other words, a state of an alternative is augmenting if there exists a stopping time
at which its expected discounted passive payoff increases. This property depends on
both the process governing the evolution of the states of an alternative, as well as the
alternative’s current state.14

For any state xi ∈ Ai of alternative i, define the index

Ji(xi) = infτ

{
E
(∑τ−1

s=0 δ
sui(xi,s)|xi

)
ai(xi, τ)

}
s.t. ai(xi, τ) > 0. (11)

Note that this index is independent of any information about all alternatives j 6= i, and
that the denominator of the expression in the curly brackets is strictly positive when xi
is augmenting.

For any state xi /∈ Ai of alternative i with ai(xi, τ) < 0, define the index

Ji(xi) = supτ

{
E
(∑τ−1

s=0 δ
sui(xi,s)|xi

)
−ai(xi, τ)

}
, (12)

and if ai(xi, τ) = 0, define Ji(xi) =∞. Note that for states that are not augmenting, the
denominator of (12) is non-negative.

A key difference between the indices (11) and (12) is that the optimization in (11) is
constrained to stopping times τ for which ai(xi, τ) > 0. The indices could be written more
compactly as single expression to reflect this fact, but that would require allowing such an
index to take both negative and positive values (while also making a distinction between
the two cases of augmenting and nonaugmenting, since in the former the optimization is
constrained). We therefore find it convenient to distinguish between the indices in both
cases.

Definition 3. Define the following order %, according to which the indices of alternatives
will be ranked.15 For any alternatives i, j (including i = j):

1. If xi ∈ Ai and xj /∈ Aj, then Ji(xi) % Jj(xj).

2. If xi ∈ Ai and xj ∈ Aj, then Ji(xi) % Jj(xj) if and only if Ji(xi) ≤ Jj(xj).

14Note that since v(·) is bounded, an alternative cannot be augmenting in all states.
15Ties may be broken according to any prespecified tie-breaking rule.
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3. If xi /∈ Ai and xj /∈ Aj, then Ji(xi) % Jj(xj) if and only if Ji(xi) ≥ Jj(xj).

The distinction between augmenting and nonaugmenting states is not merely a
technical one; it is at the heart of the tradeoff between the alternatives. If a state is
augmenting, it strictly enhances the future benefits from allocating attention to the
other alternatives—when we take into account discounting—and is therefore currently
preferred to alternatives in states that are not augmenting.

Among alternatives in augmenting states, both the direct payoffs that such alternatives
are expected to generate (captured by E

(∑τ−1
s=0 δ

sui(xi,s)|xi
)
) and the degree to which

they are expected to enhance the payoffs from other alternatives in the future (captured
by ai(xi, τ)) must be weighed. In particular, the index (11) becomes more preferred (that
is, its value decreases16) the greater is ai(xi, τ) and, perhaps surprisingly, less preferred
(that is, its value increases) the greater is E

(∑τ−1
s=0 δ

sui(xi,s)|xi
)
. This reflects the fact

that, among alternatives in augmenting states, the higher the direct payoffs an alternative
generates, the more desirable it is to postpone allocating attention to it in order to
allow such payoffs to first be enhanced by focusing attention on alternatives that are
augmenting today but generate lower payoffs. Put differently, among alternatives in
augmenting states, all things equal, it is desirable (in terms of the ordering of the indices)
to back-load allocating attention to alternatives with higher direct payoffs.

By contrast, allocating attention to alternatives in nonaugmenting states does not
enhance the flow payoffs from other alternatives—again, when we take into account
discounting. This may be the case simply because E

(
vi(x

+τ
i )|xi

)
− vi(xi) < 0 for

any possible stopping time τ . Alternatively, even if an alternative is expected to
enhance the future payoffs from allocating attention to the other alternatives—i.e.,
E
(
vi(x

+τ
i )|xi

)
− vi(xi) > 0 for some τ—it may to do so to an extent that is not sufficient

to outweigh the opportunity cost of not allocating attention to the other alternatives
in the meantime, i.e., E

(
δτvi(x

+τ
i )|xi

)
− vi(xi) < 0. Accordingly, among alternatives

in nonaugmenting states, the index (12) of an alternative is improving (i.e., its value
increases) in the direct payoff it generates (captured by E

(∑τ−1
s=0 δ

sui(xi,s)|xi
)
) and

deteriorating (i.e., its value decreases) in −ai(xi, τ) = vi(xi)− E
(
δτvi(x

+τ
i )|xi

)
> 0. In

contrast to the intuition for alternatives in augmenting states, among alternatives in
nonaugmenting states, all things equal, it is desirable (in terms of the ordering of the
indices) to front-load allocating attention to alternatives with high direct payoffs.

16Note the “inf” in the definition of (11).
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Definition 4. Denote by Λ∗ the index policy induced by the order %, that is, the policy
that allocates attention in each period to the alternative with the “most preferred” index
according to the order %.

As in Section 3.1, under the attention policy Λ∗, the decision of which alternative to
choose boils down to a simple comparison of indices across pairs of alternatives, where
each alternative’s index is a function of its own state only, and independent of any
information about other alternatives.

Theorem 2. Λ∗ is an optimal attention policy in the model with complementarities.

To see how the indices (11)–(12) relate to the index (2), consider the index of an
alternative i in a nonaugmenting state xi,t. This index satisfies

J(xi,t) ∝ supτ



(a)︷ ︸︸ ︷(
E
(∑τ−1

s=t δ
sui(xi,s)

)
E(
∑τ−1

s=t δ
s)

)
(
vi(xi,t)− E (δτvi(xi,t+τ ))

(1− δ)E(
∑τ−1

s=t δ
s)

)
︸ ︷︷ ︸

(b)


.

The index therefore maximizes the ratio between the two components discussed in Section
3.1: (a) the expected discounted payoff per unit of expected discounted time, and (b)
the net present value of the expected change in the passive payoff, again per unit of
expected discounted time. Recall that the first component is the one maximized by the
Gittins index, while the second reflects the fact that when an alternative does not receive
attention, it continues to contribute to the overall payoff, as a function of its state. The
index for the augmenting case can be rewritten analogously.

The case of complements is substantially different from the case of substitutes, as
discussed above, and as illustrated in the applications below. Indeed, it remains an open
question whether analogously to Proposition 1, there exists an auxiliary dynamic decision
problem in which the DM gets a payoff only from the chosen task, and for which the
classic Gittins index policy coincides with the optimal one we characterize.

We conclude this subsection with the following property of the optimal policy, which
is useful for applications.
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Proposition 4. Assume that the state space of all alternatives is N, with each state
s ∈ N of an alternative representing the number of periods in which the alternative has
received attention in the past. If v is concave then the alternative is augmenting in state
s if and only if a(s, 1) = δv(s+ 1)− v(s) > 0.

4.2 Applications

4.2.1 On-the-job training with complementarities

Consider an environment in which two new workers require training by a principal.
The workers’ productivity is measured by the probability with which they successfully
complete a task in a given period. Suppose that the workers must receive, in total,
two periods of training from the principal before attaining full proficiency. The only
difference between the workers is that, while the productivity of one remains constant
before completing full training, the other already improves after a single period of training.
Specifically, the following table describes the success probabilities of each of the workers
in their periodic tasks, given their level of training, where p ∈ (0, 1) and q ∈ (p,

√
p):

A B

0 p p

1 q p

2 1 1

Substitutes: Suppose first that the principal’s payoff is equal to the aggregate output
produced by both workers.

Claim 3. In the case of substitutes, for all δ ∈ (0, 1), the optimal training schedule is to
train worker A in the first two periods and then train worker B for two periods.

To see this, note that

IB(0) =
δ2(1− p)

1− δ2
< max

{
IA(0, 1) =

δ(q − p)
1− δ

, IA(0, 2) =
δ2(1− p)

1− δ2
+
δ(q − p)

1 + δ

}
= IA(0),

so that, in period 1, the principal trains worker A. Moreover, for all δ ∈ (0, 1) and
q ∈ (p,

√
p), IA(1) = δ(1−q)

1−δ > δ2(1−p)
1−δ2 = IB(0). Hence, the principal will train worker A
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also in period 2.

Complements: We now turn to consider the case where the principal receives a
positive payoff (which we normalize to 1) only if both workers complete their tasks. If
at least one of the workers fails to complete his task in a given period, the principal’s
payoff in that period is zero. It turns out that in this case the optimal training schedule
depends on the principal’s discount factor.

We begin by deriving the indices for untrained workers. We must first check whether
there exists a stopping rule τ for which ai(0, τ) > 0. Since the transition between
states in our example is deterministic, in order to determine if i ∈ {A,B} in state 0 is
augmenting, we only need to check whether max {ai(0, 1), ai(0, 2)} > 0. First note that
aB(0, 1) = δp− p < 0. Next, note that if ai(0, 2) = δ2 − p < 0, then δ < √p, which, in
turn, implies that aA(0, 1) = δq− p < 0 as, by assumption, q < √p. Hence, both workers
are augmenting in state 0 if and only if δ2 − p > 0, i.e., δ > √p.

Augmenting at zero (δ >
√
p). Since only aB(0, 2) is positive, the index for B is

supported by the stopping rule τ = 2:

JB(0) =
p+ δp

δ2 − p
.

For worker A, we must compare
∑τ−1
s=0 δ

sxA,s
aA(0,τ)

for τ ∈ {1, 2}. Since we are in the augmenting
case, the index is given by the minimum of the two values, provided that it is positive.
We therefore have

JA(0) =
p+ δq

δ2 − p
.

Since q > p, it follows immediately that JA(0) > JB(0), and since we are in the augmenting
case, it is optimal for the principal to train worker B first. For B’s index in state 1, we only
need to consider the stopping rule τ = 1. Since aB(1, 1) = δ − p > δ2 − p = aB(0, 2) > 0,
B is augmenting in state 1, and hence

JB(1) =
p

δ − p
.

Finally, as JB(1) < JB(0) < JA(0), the principal will train B in period 2.
Nonaugmenting at zero (δ ≤ √p). In this case, the index of i ∈ {A,B} in state 0

is given by (12) where the relevant stopping rules for comparison are τ ∈ {1, 2}. It is
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thus straightforward to verify that

JA(0) =
p+ δq

p− δ2
and JB(0) =

p+ δp

p− δ2
.

Since q > p, clearly JA(0) > JB(0). As we are in the nonaugmenting case, the principal
will select worker A in period 1. To complete the analysis, we consider JA(1). Since
aA(1, 1) = δ − q, there are two cases:

δ ∈ (q,
√
p): worker A in state 1 becomes augmenting. Since worker B is still in the

nonaugmenting state 0, the principal will choose worker A in period 2.
δ ≤ q: worker A in state 1 is nonaugmenting. In this case, A’s index in state 1 is

JA(1) = q
q−δ . Since JA(1) > JB(0) for all such δ, it is optimal to train A in the second

period as well.
We have therefore shown the following.

Claim 4. In the case of complements, the optimal training schedule depends on the
principal’s discount factor. If δ > √p, the unique optimal policy is to first fully train
worker B and then switch to worker A, whereas if δ < √p, the unique optimal policy is
to first fully train worker A and then switch to worker B.

This example illustrates that the training schedule depends on whether the untrained
workers are augmenting.17 In the example, the total increase in the probability of success
as a result of full training is identical (from p to 1 in two periods) for both workers. The
only difference is that, for A, part of the increase is already attained after one period of
training. The question is, when does the principal benefit the most from this intermediate
increase (from p to q)?

In the case of substitutes, appropriating this extra gain as early as possible is optimal
because of discounting. Hence, as seen in Claim 3, for all δ ∈ (0, 1) the principal trains A
first. In the case of complements, the probability of B’s success affects the expected benefit
from training A in a multiplicative manner—in the same way the discount factor affects
the (current) from future training of A. When an untrained worker B is augmenting, the
effect of discounting (i.e., delaying the training of A) is weaker than that of increasing
the success probability of B. Hence, to maximize the current value of the benefit from

17It is easy to see in this example why the case of complements cannot be solved by simply taking the
log transformation of the periodic payoffs. To see this, note that if we had taken the log transformation
of the periodic payoff, then for δ > √p, a policy that first trains A for two consecutive periods followed
by training of B for two periods is superior to the opposite policy, in contrast to what is obtained when
the periodic payoff is the product of the probabilities.
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the intermediate increase in A’s probability of success (from p to q), the principal first
trains B for two consecutive periods. When an untrained B is nonaugmenting, the effect
of discounting dominates, and therefore, the result is similar to the case of substitutes.

4.2.2 Developing multiple complementary attributes

Oftentimes, decision-makers are faced with the problem of allocating time between the
development of multiple complementary attributes. For example, a firm developing
optimization software for routing or scheduling problems often needs to prioritize work
on either the speed or the accuracy of its algorithms. Similarly, a video camera developer
has to allocate time between increasing the image resolution and increasing the field of
view. In addition, investment in different complementary skills requires a decision of
when to focus on each skill. For instance, an army unit needs to decide when to focus on
the physical fitness of its soldiers and when to focus on their sharpshooting skills.

In many of these examples, the time-allocation or sequencing decision is made under
competitive pressure and uncertainty about when the product will need to come out, or
when the combination of all the skills will need to be applied. Introduction of similar
products by rival firms may lead a firm to release its product even when some of its
features could still be further developed, and a threat by an enemy may require an army
to deploy its unit in the middle of its training regimen.

In this subsection, we apply our framework to a simple example that illustrates
the potential effect of this uncertainty on the optimal sequencing of investment in
complementary features/skills that differ in their rates of improvement. While the
literature has analyzed the impact of competition on the incentives to innovate, and on
the intensity of innovation (see, e.g., Grossman and Shapiro, 1987; Harris and Vickers,
1987; Boone, 2001), the question of how competitive pressure—more specifically, the
uncertainty that it induces—affects the development process (in particular, the scheduling
of development across different features) itself is largely underexplored.18

Consider a firm that develops a product with two complementary attributes, X (speed)
and Y (accuracy). In each period t it needs to decide whether to focus on developing X
or Y , where developing a feature means that its value increases. We denote by X(t) and
Y (t) the value of the attribute at time t (where a particular value is denoted by a lower

18A related problem studied in Poggi (2021) is how to allocate a given amount of resources between
two projects when the amount of resources required to complete each project is unknown, and when the
payoff from completing both projects is higher than the sum of the payoffs from completing only one
project.
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case letter, x or y). We assume that X(t) ∈ {1, 2, ...}, such that X(t) = X(t− 1) + 1 if
the firm invested in X at time t− 1, and X(t) = X(t− 1) otherwise. By contrast, Y has
only two possible values, 1 and h > 1. Initially, Y (0) = 1, and the value of Y remains
y = 1 until the firm invests in the attribute for two periods (not necessarily consecutive),
at which point its value increases to y = h, and remains h thereafter. This captures the
idea that increasing accuracy requires more periods of investment, whereas speed can be
increased incrementally each period.

The firm’s profit from releasing the product to the market at time t is

U(t) = X(t)Y (t).

In each period, there is a probability 1− β that the firm needs to release the product
(ending its investment decision problem) because a rival firm has introduced a competing
product. We therefore interpret β as the intensity of competition in the market. We
focus on the case where

β <
1√
h
. (13)

As we will see, this ensures that investment in accuracy is always nonaugmenting.
The firm’s ex-ante expected profit is then equal to

E
∞∑
t=0

βt(1− β)X(t)Y (t),

and its problem is to choose a policy—specifying which attribute to develop at each point
in time—to maximize these expected profits.

Our objective is to understand the effect of the intensity of competition β on the
sequencing of investment in the two attributes.

Proposition 5. Consider two environments, one where the intensity of competition is β,
and another with a higher intensity β′ > β. Under the firm’s optimal policy, investment
in accuracy (Y ) occurs weakly later in the first environment (i.e., with β) than in the
second environment (i.e., with β′).

For example, if h = 2 and β = 0.4, the firm invests in X for three consecutive periods,
and only then switches to Y , but if β = 0.6, it switches to Y already in the third period.
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4.2.3 Supervising agents with stochastic costs of effort

The literature on moral hazard has focused on characterizing payment schemes that
incentivize agents to exert effort. However, there are many environments in which workers
get a fixed wage, and hence cannot be incentivized with monetary transfers that depend
on their output (for instance, in the public sector). In these environments, a principal
may need to supervise agents while they work on a task, in order to ensure that the
task is completed successfully. If the principal is in charge of multiple agents, he must
decide in each period which agent to supervise, taking into account the effect of repeated
supervision on the agent’s willingness to work when left unsupervised. For some agents,
supervision can be constructive and helpful, while for others it may be perceived as an
unwanted annoyance. The following simple example illustrates how our framework can
be applied to characterize the principal’s optimal policy in the presence of heterogeneous
agents.

There are two agents who jointly work on a project. Each agent is in charge of a task,
and the project is completed successfully if and only if both agents successfully complete
their respective task. When an agent is supervised, he successfully completes his task
with certainty. When left unsupervised, the agent faces a stochastic cost of effort in
completing the task. That is, the agent’s motivation for carrying out the task fluctuates
(e.g., it may depend on his mood that day, which is affected by factors outside of his
control), and his realized motivation determines his perceived cost of exerting effort. The
agent exerts effort if and only if the realized cost does not exceed a threshold. Each agent
i starts with an initial threshold ci, which can change with the number of times in which
he is supervised.

Assume that in each period an agent draws a cost from a uniform distribution on
[0, 1]. Agent 1’s cost threshold is zero, and remains constant regardless of the number of
times he is supervised. Thus, agent 1 never works when left unsupervised. By contrast,
agent 2’s threshold as a function of the number of times he was supervised s is v(s),
where v(·) is increasing and concave. The interpretation is that supervision helps agent 2

to learn how to perform the task more efficiently, and hence with a lower perceived cost,
but the returns to supervision are diminishing. The question we consider is: How should
the principal optimally supervise the agents over time?

Proposition 6. There exists a minimal integer T such that a2(T, 1) < 0. Under the
optimal policy, the principal supervises agent 2 for T consecutive periods and then switches
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to supervising agent 1 indefinitely.

To illustrate the above result, let v(s) = (1
2
)

1
s+1 . If δ >

√
1
2
, then a2(0, 1) > 0, and

the principal will begin supervising agent 2, as he is augmenting. He will continue to
do so until a state in which agent 2 is nonaugmenting. Agent 2 is nonaugmenting at
s if a(s, 1) ≤ 0, i.e., if

(
1
2

) 1
(s+1)(s+2) ≥ δ. If δ ≤

√
1
2
, then agent 2 is also nonaugmenting

and it is optimal to supervise agent 1 only. For example, if δ = 0.99, then the principal
supervises agent 2 for six periods, after which he switches to supervise agent 1 in all
periods. Hence, from period 7 onward, the expected per-period output is

(
1
2

) 1
7 ≈ 0.9.

Thus, if the principal is sufficiently patient, he will first “invest” in lowering the cost of
agent 2, even at the expense of no output, and only then switch to supervising agent 1.

5 Concluding remarks

This paper characterizes the optimal solution to a new class of dynamic decision problems
that encompass a broad variety of environments. In these problems, a DM chooses in
each period which task to attend to, given a periodic payoff that is affected by the output
of both the chosen and unchosen tasks. Despite the externality that unchosen tasks have
on the periodic payoff, we show that the optimal strategy is characterized by an index
policy whereby each task (in each state) is assigned a score that is independent of the
other tasks, and the choice of task consists of comparing their indices. The fact that
the optimal policy takes this “separable” form is important for applications: it is useful
for deriving key properties of the dynamics and comparative statics under the optimal
policy, as well as for computational purposes (avoiding the “curse of dimensionality”).

Our characterization of the optimal policy may potentially open the door for the
analysis of new decision problems beyond the classic multi-armed bandit paradigm. The
characterization also suggests that perhaps a more general class of problems may admit
a tractable solution: one where the DM’s periodic payoff is the generalized mean of
payoffs/outputs of all tasks. Hopefully, our solution to the case of the arithmetic and
geometric means s useful hints for addressing this general case.
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Appendix

Proofs of Theorems 1 and 2. The proofs of both theorems follow the same steps.
Whenever the details of the arguments depend on whether the alternatives are substitutes
or complements, we give a separate argument for each case.

For any alternative k, let Ik denote the index Ik in the case of substitutes and Jk in
the case of complements. Let . denote the binary relation ≥ in the case of substitutes
and % in the case of complements. Finally, let P∗ denote the index policy Γ∗ in the case
of substitutes, and Λ∗ in the case of complements.

Let π0 be an attention policy that allocates attention to some alternative i in period
0 and then proceeds according to the attention policy P∗ from period 1 onward. In order
to prove the optimality of P∗, it is enough to show that the expected discounted payoff
under the policy π0 is no greater than the expected discounted payoff under P∗, given
any initial state (x1,0, ..., xn,0) of the DM.19

Let (x1,0, ..., xn,0) be the initial state of the DM’s problem. Consider the attention
policy π0. If π0 allocates attention in period 0 to the same alternative P∗ would have
chosen, the two policies coincide in all periods. Therefore, suppose that π0 allocates
attention to alternative i in period 0, while P∗ would have allocated attention to
alternative j 6= i in period 0. Note that this means that Ij(xj,0) . Ii(xi,0). Also note that
despite the fact that π0 proceeds according to P∗ from period 1 onward, π0 need not
allocate attention to j in period 1, since the state of alternative i may change as a result
of the attention it received in period 0.

19This follows from standard results in the literature on Markov decision processes.
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Define τ ∗k (xk) = min{t > 0 : Ik(xk) . Ik(x+tk (xk))}, where x+tk (xk) denotes alternative
i’s (stochastic) state after t periods of attention, starting in state xk. In other words,
beginning in state xk, τ ∗k (xk) is the first time at which the index Ik becomes weakly
worse than Ik(xk) according to ..20

Denote by σ1 the stochastic time at which an alternative other than i receives attention
under π0. Without loss of optimality, we can assume that this will be alternative j, and
as j has not been chosen yet, its state in period σ1 is equal to that of period 0. Let
τ ∗j (xj,0) be the optimal stopping time in the definition of the index of j given state xj,0.
Setting σ2 = τ ∗j (xj,0), π0 will therefore allocate attention to alternative j from period σ1
until (at least) period σ1 + σ2 − 1. At time σ1 + σ2, the index of alternative i will be
Ii(x+σ1i (xi,0)), the index of alternative j will be Ij(x+σ2j (xj,0)), and the index of all other
alternatives will be Ik(xk,0).

The final step of the proof will rely on the following Lemma. The details of its proof
depend on whether the alternatives are substitutes or complements. In order not to
disrupt the flow of the proof of Theorems 1 and 2, we give the separate proof of each
case after the final step of the proof of Theorems 1 and 2.

Lemma 1. The expected payoff under π1 is weakly greater than that under π0.

If π1 coincides with P∗ during the periods σ2, ..., σ2 + σ1 − 1, then π1 and P∗ are
identical and the proof is complete. Otherwise, we can modify π1 to a new attention policy
π2, repeating the argument in the preceding paragraphs.21 We can proceed inductively
and construct a sequence of policies (π0, π1, π2, ...), such that: (i) given the initial state
(x1,0, ..., xn,0), πs+1 yields an expected discounted payoff no smaller than πs, and (ii) the
expected discounted payoff under πs converges to the expected discounted payoff under
P∗ as s→∞ (to see this, note that πs coincides with P∗ for at least the first s periods).

20In the case of substitutes, τ∗k (xk) attains the supremum in (2) by Claim 1. Similarly, in the case of
complements, it can be shown that τ∗k (xk) attains the infimum of (11) or the supremum of (12).

21In particular, consider the vector of states of all of the alternatives, starting from (x1,0, ..., xn,0) and
having followed P∗ in periods 0, ..., σ2 − 1. Suppose P∗ would proceed to choose alternative k 6= i at
this stage (it may or may not be the case that k = j). Let τ∗k (xk,σ2) be the optimal stopping time in
the definition of the index of k given state xk,σ2

. The attention policy π1 therefore pays attention to
alternative j during periods 0, ..., σ2 − 1, then to alternative i during σ2, ..., σ2 + σ1 − 1, and then to
alternative k during (at least) σ2+σ1+ τ∗k (xk,σ2

)− 1. Denoting σ3 = σ2+ τ
∗
k (xk,σ2

), define π2 as follows.
First, π2 follows P∗ during periods 0, ..., σ3 − 1, then it chooses alternative i during σ3, ..., σ3 + σ1 − 1,
and from then on it proceeds according to P∗. Following precisely the same argument as above, π2

yields an expected discounted payoff no smaller than π1.
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It follows that the expected discounted payoff under π0 is no greater than under P∗,
which completes the proof. �

Proof of Lemma 1. The policies π0 and π1 coincide from period σ1 + σ2 onward.
Therefore we focus on periods 0, ..., σ1 + σ2 − 1.

The case of substitutes. Under π1, the expected discounted payoff during periods
0, ..., σ1 + σ2 − 1 is equal to

E

(∑
k 6=i,j

δσ1+σ2−1vk(xk,0)

)
+ E

(
σ2−1∑
t=0

δtuj(xj,t)

)
+ E

(
σ2−1∑
t=0

δtvi(xi,0)

)

+ E

(
δσ2

σ1−1∑
t=0

δtvj(xj,σ2)

)
+ E

(
δσ2

σ1−1∑
t=0

δtui(xi,t)

)
.

Similarly, the expected payoff during periods 0, ..., σ1 + σ2 − 1 under π0 is equal to

E

(∑
k 6=i,j

δσ1+σ2−1vk(xk,0)

)
+ E

(
σ1−1∑
t=0

δtui(xi,t)

)
+ E

(
σ1−1∑
t=0

δtvj(xj,0)

)

+ E

(
δσ1

σ2−1∑
t=0

δtvi(xi,σ1)

)
+ E

(
δσ1

σ2−1∑
t=0

δtuj(xj,t)

)
.

Subtracting the two and rearranging, we have

E

(
σ2−1∑
t=0

δtuj(xj,t)

)
(1− E (δσ1)) +

vi(xi,0)E(1− δσ2)
1− δ

+ E (δσ2vj(xj,σ2))E
(

1− δσ1
1− δ

)
− E

(
σ1−1∑
t=0

δtui(xi,t)

)
(1− E (δσ2))

− vj(xj,0)E(1− δσ1)
1− δ

− E (δσ1vi(xi,σ1))E
(

1− δσ2
1− δ

)
.

To see that this expression is non-negative note that multiplying by 1−δ
E(1−δσ1 )E(1−δσ2 ) and

rearranging, the difference can be written as

(1− δ)E
(∑σ2−1

t=0 δtuj(xj,t)
)

+ E (δσ2vj(xj,σ2))− vj(xj,0)
E (1− δσ2)

−

(
(1− δ)E

(∑σ1−1
t=0 δtui(xi,t)

)
+ E (δσ1vi(xi,σ1))− vi(xi,0)

E (1− δσ1)

)
.

36



This difference is non-negative since the first summand equals to Ij(xj,0) (as σ2 is an
optimal stopping time) and the second summand is at most Ii(xi,0) (as σ1 is some stopping
time), and Ij(xj,0) ≥ Ii(xi,0). This completes the proof for the case of substitutes.

The case of complements. The expected payoff during periods 0, ..., σ1 +σ2−1 under
π1 is equal to

∏
k 6=i,j

vk(xk,0)

{
vi(xi,0)E

(
σ2−1∑
t=0

δtuj(xj,t)

)
+ E (δσ2vj(xj,σ2))E

(
σ1−1∑
t=0

δtui(xi,t)

)}
. (14)

Similarly, under π0, the expected payoff during these periods is equal to

∏
k 6=i,j

vk(xk,0)

{
vj(xj,0)E

(
σ1−1∑
t=0

δtui(xi,t)

)
+ E (δσ1vi(xi,σ1))E

(
σ2−1∑
t=0

δtuj(xj,t)

)}
. (15)

Denote by ∆(π1, π0) the difference between the expected discounted payoff under π1

and its counterpart under π0. Subtracting (15) from (14) and rearranging, we have that
∆(π1, π0) is equal to

∏
k 6=i,j

vk(xk,0)

{
E

(
σ2−1∑
t=0

δtuj(xj,t)

)
(vi(xi,0)− E (δσ1vi(xi,σ1))) (16)

− E

(
σ1−1∑
t=0

δtui(xi,t)|xi,0

)
(vj(xj,0)− E (δσ2vj(xj,σ2)))

}
.

We now verify that ∆(π1, π0) ≥ 0. Recall that Jj(xj,0) % Ji(xi,0). There are three
possible cases.

Case 1. Suppose that xj,0 is an augmenting state and xi,0 is nonaugmenting. Then,
by the definition of σ2 = τ ∗j (xj,0), vj(xj,0)− E (δσ2vj(xj,σ2)) < 0, and by the definition of
Ji(xi,0), vi(xi,0)− E (δσ1vi(xi,σ1)) ≥ 0. This guarantees that ∆(π1, π0) ≥ 0.

Case 2. Suppose that xj,0 and xi,0 are both augmenting. Then Jj(xj) % Ji(xi) implies
that Ji(xi) ≥ Jj(xj). Furthermore, vj(xj,0)− E (δσ2vj(xj,σ2)) < 0 by the definition of σ2.
Suppose first that vi(xi,0)− E (δσ1vi(xi,σ1)) < 0. Then

E
(∑σ1−1

t=0 δtui(xi,t)
)

E (δσ1vi(xi,σ1))− vi(xi,0)
≥ Ji(xi,0) ≥ Jj(xj,0) =

E
(∑σ2−1

t=0 δtuj(xj,t)
)

E (δσ2vj(xj,σ2))− vj(xj,0)
.

37



The first inequality follows from (11), while the equality follows from the fact that σ2 =

τ ∗j (xj,0) is the optimal stopping time in the definition of the index Jj(xj,0). Rearranging
and multiplying both sides by

∏
k 6=i,j vk(xk,0), we have that ∆(π1, π0) ≥ 0.

Now suppose that vi(xi,0)− E (δσ1vi(xi,σ1)) > 0. Then

E
(∑σ1−1

t=0 δtui(xi,t)
)

E (δσ1vi(xi,σ1))− vi(xi,0)
≤

E
(∑σ2−1

t=0 δtuj(xj,t)
)

E (δσ2vj(xj,σ2))− vj(xj,0)
,

and once again ∆(π1, π0) ≥ 0.
Finally, if vi(xi,0)− E (δσ1vi(xi,σ1)) = 0 then clearly ∆(π1, π0) ≥ 0.
Case 3. Suppose that xj,0 and xi,0 are both nonaugmenting. Then Jj(xj) % Ji(xi)

implies that Ji(xi) ≤ Jj(xj). Furthermore, vi(xi,0)− E (δσ1vi(xi,σ1)) ≥ 0 and vj(xj,0)−
E (δσ2vj(xj,σ2)) ≥ 0, and by (12),

E
(∑σ1−1

t=0 δtui(xi,t)
)

vi(xi,0)− E (δσ1vi(xi,σ1))
≤ Ji(xi,0) ≤ Jj(xj,0) =

E
(∑σ2−1

t=0 δtuj(xj,t)
)

vj(xj,0)− E (δσ2vj(xj,σ2))
.

Rearranging and multiplying by
∏

k 6=i,j vk(xk,0), we have that ∆(π1, π0) ≥ 0, which
completes the case of complements. �

Proof of Proposition 1. Since the fictitious problem is a standard multi-armed bandit
problem, its optimal policy is simply the well-known Gittins index policy, which chooses
in each period t the alternative with the greatest Gittins index

GIj(xj,t) = supτ

{
E
(∑τ−1

s=0 δ
swj(xj,t+s)

)
E(
∑τ−1

s=0 δ
s)

}
.

By the definition of wj,

GIj(xj,t)

= supτ
E
(∑τ−1

s=0 δ
s
(
uj(xj,t+s)− vj(xj,t+s) + δ

1−δ (vj(xj,t+s+1)− vj(xj,t+s))
))

E
(∑τ−1

s=0 δ
s
)

= supτ
E
(
(1− δ)

∑τ−1
s=0 δ

suj(xj,t+s) +
∑τ−1

s=0 δ
s (−vj(xj,t+s) + δvj(xj,t+s+1))

)
E (1− δτ )

= supτ
E
(
(1− δ)

∑τ−1
s=0 δ

suj(xj,t+s)−
∑τ−1

s=0 δ
svj(xj,t+s) +

∑τ
s=1 δ

svj(xj,t+s)
)

E (1− δτ )
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= supτ
E
(
(1− δ)

∑τ−1
s=0 δ

suj(xj,t+s)− vj(xj,t) + δτvj(xj,t+τ )
)

E (1− δτ )
= Ij(xj,t).

Hence, the Gittins indices GIj in the fictitious environment coincide with the indices Ij.
Therefore, since by Theorem 1 the attention policy Γ∗ is optimal for the problem P ,

and since the policy based on the indices GIj is optimal for the fictitious problem P̂ , this
proves the result. �

Proof of Proposition 2. We first assume that inequality (9) is satisfied, and then
verify that this is indeed the case in the solution. Let xi,t, the state of agent i in period
t, be defined as the number of times agent i was assigned the task up to and including
period t. Then

qi(xi,t) =

xi,t−1∑
n=0

θn.

Let Ii(k) denote the index of agent i who is currently in state k and denote

f(τ |k) ≡
(1− δ)

[∑τ−1
t=0 δ

tβqi(k + t)
]

+ [δτβ (1− β) qi(k + τ)− β (1− β) qi(k)]

1− δτ
.

Then by our definition of ui and vi,

Ii(k) = supτ [f(τ |k)] = f(τ ∗|k).

Some tedious algebra establishes that for every τ > 1,

f(τ |k)− f(τ − 1|k)

= βθkδτ−1 (β − δ + θδ − θβδ)
[

(1− θδ)(1− θτ−1)− δ(1− θ)(1− θτ−1δτ−1)
(1− θ) (1− δθ) (1− δτ ) (1− δτ−1)

]
.

Note that the term in square brackets on the RHS is positive if and only if

τ−2∑
n=0

θn > δ
τ−2∑
n=0

θnδn.

Hence, it is positive for all θ, δ > 0. It follows that f(τ |k)− f(τ − 1|k) < 0 for all τ > 1

if and only if β − δ + θδ − θβδ > 0, which holds if and only if (10) holds. Hence, τ ∗ = 1

if and only if this condition holds; otherwise, τ ∗ =∞.
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Suppose that (10) holds so that τ ∗ = 1. It is optimal to switch agents each period if
and only if

I(xk)− I(xk+1) = −θk β

1− δ
(β − δ + θδ − θβδ) ≥ 0

for every state k. Since (10) holds, this inequality is satisfied.
If (10) is violated, then τ ∗ =∞, and it is optimal to remain with one agent for all

periods.
It remains to verify that (9) is satisfied. Assume first that (10) holds. Then every

period P switches an agent. This means that in any given period, there is some k > 1

such that max{q1, q2} =
∑k

n=0 θ
n while min{q1, q2} =

∑k−1
n=0 θ

n. Hence, (9) is satisfied if
and only if ∑k−1

n=0 θ
n∑k

n=0 θ
n
≥ 1− β,

which is satisfied if and only if

β

1− β
>

θk∑k−1
n=0 θ

n
.

Since β ≥ 1
2
, the LHS is at least one, while the RHS is smaller than one.

Assume next that (10) is violated. Then it is optimal for P to remain with the same
agent every period. Hence, (9) is satisfied if

1

limk→∞
∑k−1

n=0 θ
n
≥ 1− β

or, equivalently, if 1− θ ≥ 1− β. �

Proof of Proposition 3. The proof proceeds in two steps. First we derive the indices
for the two sectors, and then we apply them to characterize the optimal career path.

Step 1: First we show that the indices for the sector A are as follows:

IA(s) =


r

1−δ + rs(1− α)− (1−α)r(T−s)δ(T−s)

1−δ(T−s) , s < T

(1− α)Tr , s ≥ T,

while the indices for sector B are as follows:
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IB(s) =

 b
[
1−(1−β)δ

1−δ

]
, s = 0

(1− β)b , s > 0.

The index for sector B is relatively simple to derive. For s > 0,

IB(s) = sup
τ

(1− δ)
∑τ−1

k=0 δ
kb+ δτβb− βb

1− δτ
= (1− β)b,

while for s = 0,

IB(0) = sup
τ

(1− δ)
∑τ−1

k=0 δ
kb+ δτβb

1− δτ
= sup

τ

[
b+

δτ

1− δτ
βb

]
= b

[
1− (1− β)δ

1− δ

]
.

We next turn to sector A. For s ≥ T the index is simple to derive:

IA(s) = sup
τ

(1− δ)
∑τ−1

k=0 δ
kTr + δταTr − αTr
1− δτ

= (1− α)Tr.

To derive the index for s < T, note that, for s+ τ ≤ T ,

IA(s, τ) =
(1− δ)

∑τ−1
k=0 δ

k(s+ k + 1)r + δτα(s+ τ)r − αsr
1− δτ

,

and the RHS of the above expression reduces to r
1−δ + rs(1 − α) − (1−α)rτδτ

1−δτ , which is
increasing in τ. Hence, since IA(s) is constant for s ≥ T , it follows that for s < T ,

IA(s) ∈ {IA(s, T − s), IA(s,∞)}.

The assumption that δ ≥ (1−α)T−1
(1−α)(T−1) implies that IA(0, 1) ≥ IA(T ). Thus, IA(s) =

IA(s, T − s), which completes Step 1.
Step 2: First note that by Step 1, A0 = IA(0) = IA(0, T ), which implies that if

the individual starts working in A, he will remain there for T consecutive periods. In
addition, Step 1 implies that A1 = IA(T ), B0 = IB(0), and B1 = IB(1). Finally, B0 > B1

and by the assumption on δ, A0 > A1. �

Proof of Proposition 4. Assume that a(s, τ + 1) = δτ+1v(s+ τ + 1)− v (s) > 0. Since

δτ+1v(s+ τ + 1)− v (s)

= δτ [δv(s+ τ + 1)− v(s+ τ)] + δτ−1 [δv(s+ τ)− v(s+ τ − 1)] + ..+ [δv (s+ 1)− v (s)]
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< δτ [δv(s+ 1)− v (s)] + δτ−1 [δv(s+ 1)− v (s)] + ..+ [δv (s+ 1)− v (s)]

= (δτ + ...+ 1) [δv (s+ 1)− v (s)] ,

we have that δv (s+ 1)− v (s) > 0. �

Proof of Proposition 5. Since Y requires two periods of investment in order to increase
its value from 1 to h, it is nonaugmenting if and only if β2h − 1 ≤ 0. By (13), this
inequality necessarily holds. Denote by 0 the state of attribute Y before it has received
any periods of attention.

We first show that JY (0) = JY (0, τ = 2). That is, we show that the optimal stopping
time in the definition of the index JY (0) specifies investment in the attribute Y for
exactly two periods. To see this, note that JY (0, τ = 2) > JY (0, τ) for all τ > 2 if and
only if

1 + β

1− β2h
>

1 + β + β2h1−βτ−2

1−β

1− βτh
,

which reduces to h > 1, and therefore clearly holds. It is also easy to verify that
JY (0, τ = 2) > JY (0, τ = 1). Hence,

JY (0) =
1 + β

1− β2h
.

We next turn to the attribute X. Clearly, we can identify the state of the attribute
X by its value, x. We now derive JX(x). By Proposition 4, X is nonaugmenting in state
x if and only if a(x, 1) = β(x+ 1)− x ≤ 0. Thus, x is nonaugmenting if and only if

β ≤ x

x+ 1
. (17)

Hence, for any given β, for a sufficiently large value x, X is nonaugmenting. If X(t) = x

and is augmenting in that state, then at t, under the optimal policy, the firm will
necessarily develop X, since Y is nonaugmenting. It will continue to develop X until it
reaches a state in which X is nonaugmenting, at which time the firm chooses between X
and Y according to the higher index (as both attributes are nonaugmenting). Let us
then derive JX(x) for states in which it is nonaugmenting.

Let x be a state for which X is nonaugmenting. We claim that JX(x, 1) > JX(x, τ)
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for all τ > 1. To see this, note that

JX(x, τ) =

∑τ−1
t=0 β

t(x+ t)

x− βτ (x+ τ)
=
x · 1−βτ

1−β + (τ−1)βτ+1−τβτ+β
(1−β)2

x− βτ (x+ τ)
,

where
∂

∂τ

s · 1−βτ1−β + (τ−1)βτ+1−τβτ+β
(1−β)2

s− βτ (s+ τ)

 =
βτ+1

(1− β)2
· τ ln β − βτ + 1

(βττ − s+ sβτ )2
.

Since
∂

∂τ
(τ ln β − βτ + 1) = − (ln β) (βτ − 1) < 0

and since ln β − β + 1 < 0, it follows that JX(x, τ) is decreasing in τ . Therefore, we have
shown that

JX(x) =
x

x− β(x+ 1)
.

To complete the proof, we show that if for x and β such that X is nonaugmenting,
JX(x) < JY (0), then this inequality continues to hold for β′ > β.22

First, note that if h = 1 + (1 + β)/xβ, then JX(x) = JY (0). If we now increase β,
both sides of the equation increase, and the difference between the changes in JY (0) and
JX(x) is equal to

∂

∂β

(
1 + β

1− β2h

)
− ∂

∂β

(
x

x− β(x+ 1)

)
=
βh (β + 2) + 1

(1− β2h)2
− x(x+ 1)

(β − x+ xβ)2

=
x

(β + 1) (β − x+ xβ)2

> 0,

where the last equality follows from substituting h = 1 + (1 + β)/xβ. If we now increase
h to above 1 + (1 + β)/xβ, then ∂

∂β

(
x

x−β(x+1)

)
remains unchanged, but

∂

∂x

∂

∂β

(
1 + β

1− β2x

)
=

∂

∂x

(
βx (β + 2) + 1

(xβ2 − 1)2

)
=
β (xβ3 + 2xβ2 + 3β + 2)

− (xβ2 − 1)3
> 0.

Therefore, if whenever JX(x) = JY (0) increasing β leads to a greater rise in JY (0) than
in JX(x), then when JX(x) < JY (0), the increase in JY (0) is even greater. This means
that if the firm switches from X to Y at some time t for some value of β, it will not

22Note that if x and β are such that X is augmenting, then X is also augmenting under x and β′ > β.
That is, X becomes nonaugmenting under β sooner than it does under β′ > β.
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make the switch at a later time for β′ > β. �

Proof of Proposition 6. Let the state s of an agent denote the number of times he
was supervised. Since a1(s, τ) = 0 for all (s, τ), in any state s, agent 1 is nonaugmenting
and has an infinite index. Thus, whenever agent 2 is in an augmenting state it is optimal
to supervise him; otherwise, it is optimal to supervise agent 1. Since v(s) is concave, it
follows from Proposition 4 that for all s, a2(s, τ) > 0 if and only if a2(s, 1) > 0. Hence,
agent 2 is augmenting in state s if and only if v(s+1)

v(s)
> 1

δ
, and he cannot be augmenting

in all states since this would imply that lims→∞v(s) > 1. �
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