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1 The variance cost function

In this appendix we show that our analysis extends to the case in which the cost of a

signal f(qj; rj)gJj=1 is proportional to the variance of the posteriors on the state ! = 1,
where the mean posterior is the prior (i.e.,

PJ
j=1 qj � rj = p.). I.e.,

c
�
f(qj; rj)gJj=1

�
= � �

JX
j=1

qj (rj � p)2 .

Note that Lemma 1 extends to this cost function. To see why, de�ne h (r) � (r � p)2

and note that this function is convex in r. Then, the same arguments in the proof of

Lemma 1 readily apply to the newly de�ned function h (r).

It follows that we can restrict attention to signals that are represented by the triplet

(q; rH ; rL) as in the main text. We therefore consider the cost function

c (q; rH ; rL) = � �
�
q � (rH � p)2 + (1� q) (rL � p)2

�
.

Substituting rL =
p�qrH
1�q , we can rewrite the cost as a function of only q and rH :

c (q; rH) = �
q

1� q (rH � p)
2 .
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To simplify the exposition, we focus on the case where � > n: This guarantees that

information is never "too cheap" so that removing all the uncertainty (i.e., rH = 1 and

rL = 0) becomes optimal (the KL-divergence cost function in our main text satis�es this

for all (n; �)). The analysis remains essentially the same when � � n, but the exposition
is more cumbersome since we have to take care of more corner solutions in the designer�s

optimization problem.

To establish that the qualitative analysis in the main text extends to the above

cost function, we mimic the steps in the proof of Proposition 2. First, we �nd three

functions, r�H (�; �) ; r
�
L (�; �) and q

� (�; �), that satisfy non-wastefulness and maximize

the Lagrangian that is given by Equation (18), for any multiplier � and any pro�le of

types �. Second, we show that for any � � 0, the function q� (�; �) is increasing in each
player�s type while r�H (�; �) and r

�
L (�; �) are decreasing in each player�s type. Hence, the

function Q� (�i; �) that is induced by q� (�; �) (according to Equation 16) is monotone.

Third, we apply an argument in Hellwig (2013) that guarantees the existence of some

�� � 0 for which the mechanism de�ned by r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) has a

non-negative virtual surplus. It then follows that the functions r�H (�; �
�) ; r�L (�; �

�) and

q� (�; ��) de�ne the mechanism that attains the maximal aggregate surplus (Equation

14) subject to (i) Q (�i) is monotone and (ii) the aggregate virtual surplus (Equation 15)

is non negative.

PART I. The �rst-order condition with respect to q for an interior solution (~q; ~rH) that
maximizes the Lagrangian L (q; rH ; �) is

rH � (1� w)�
1

n
� � �

�
rH � p
1� q

�2
= 0 (FOCq)

while the �rst-order condition with respect to rH is

q � 1

n
� 2
�
�

q

1� q (rH � p)
�
= 0 (FOCr)

where w is as de�ned in the main text. From the second equation we have that rH�p
1�q =

n
2�
.

Plugging this into the �rst equation yields:

rH � (1� w)�
1

n
� � �

� n
2�

�2
= 0

Hence,

~rH(w) =
n

4�
+ 1� w (1)
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Using rH�p
1�q =

n
2�
again we can solve for ~q :

~q(w) =
1

2
+
2�

n
(w � (1� p)) (2)

Finally, from rL =
p�qrH
1�q it follows that

~rL(w) = 1� w �
n

4�
(3)

Since L is not a concave function in general, it is not a priori guaranteed that (~q; ~rH)
is a maximizer of L. Our �rst result establishes that although L is not concave, if (~q; ~rH)
is interior and non-wasteful then it is indeed a maximizer of L.

Lemma A0. For any value of rH and w, de�ne q̂ (rH ; w) to be the value of q that satis�es
L1 (q; rH ;w) = 0 (i.e. FOCq) and de�ne r̂L (rH ; w) � p�rH �q̂(rH ;w)

1�q̂(rH ;w) to be value of rL that

is determined by rH and q̂ (rH ; w). Then, L̂ (rH ; w) � L (q̂ (rH ; w) ; rH ; w) = �(p� rL)2.
Proof. By de�nition we have that

L̂ (rH ; w) = q̂ (rH ; w) � c1 (q̂ (rH ; w) ; rH)� c (q̂ (rH ; w) ; rH)

Substituting

q̂ (rH ; w) =
p� r̂L (rH ; w)
rH � r̂L (rH ; w)

c1 (q̂ (rH ; w) ; rH) = � �
�

rH � p
1� q̂ (rH ; w)

�2
= � �

�
rH � p+ q̂ (rH ; w) rH � q̂ (rH ; w) rH

1� q̂ (rH ; w)

�2
= � � (rH � r̂L (rH ; w))2

c(rH ; r̂L (rH ; w)) = � �
�
q̂ (rH ; w) � (rH � p)2 + (1� q̂ (rH ; w)) (r̂L (rH ; w)� p)2

�
= � � [ p� r̂L (rH ; w)

rH � r̂L (rH ; w)
� (rH � p)2 +

rH � p
rH � r̂L (rH ; w)

� (p� r̂L (rH ; w))2]

= �(rH � p)(p� r̂L (rH ; w))

We obtain that

L̂ (rH ; w) =
p� r̂L (rH ; w)
rH � r̂L (rH ; w)

� � � (rH � r̂L (rH ; w))2 � �(rH � p)(p� r̂L (rH ; w))

= �(p� r̂L (rH ; w))2. �
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Lemma A1. For any w, if (~q; ~rH) is interior and non-wasteful, then it maximizes

L (q; rH ; w).

Proof. First, we show that (~q; ~rH) is a local maximum of L (q; rH ;w). Then, we show
that L (~q; ~rH ;w) is greater than the value of L in any corner solution.
To show that (~q; ~rH) is a local maximum it su¢ ces to show that (i) L11 (q; rH ;w) < 0

and (ii) the determinant of the Hessian of L (q; rH ;w) is positive, when evaluated at
(~q; ~rH). To establish (i), note that

L11 (q; rH ;w) =
d

dq

 
rH � (1� w)�

1

n
� � �

�
rH � p
1� q

�2!
= � 2

n
�
(p� rH)2

(1� q)3
< 0

To establish (ii) note that

L22 (q; rH ;w) =
d

drH

�
q � 1

n
� 2
�
�

q

1� q (rH � p)
��

= � 2
n
q
�

1� q

L12 (q; rH ;w) =
d

dq

�
q � 1

n
� 2
�
�

q

1� q (rH � p)
��

= 1� 2� (rH � p)
n (q � 1)2

The determinant of the Hessian is equal to L11 (q; rH ;w) �L22 (q; rH ;w)�(L12 (q; rH ;w))2;
which reduces to�

2�

n
� rH � p
1� q

�2
� q

(1� q)2 �
�
1� 1

1� q �
2�

n
� rH � p
1� q

�2
At (~q; ~rH) we have

~rH�p
1�~q =

n
2�
, and hence, the determinant reduces to

~q

(1� ~q)2 �
~q2

(1� ~q)2 > 0.

We now turn to show that L (~q; ~rH ;w) is (weakly) greater than the value of L in any
corner solution. To see this, recall that q can take any value from 0 to p

rH
and that

L (q; rH ;w) = q[rH � (1� w)]�
1

n
� c(q; rH)

If q = 0; then no signal is acquired and hence, L (0; rH ;w) = 0: On the other hand,

L (~q; ~rH ;w) can be written as�
p� ~rL
~rH � ~rL

� �
n
� (~rH � ~rL)2 �

1

n
�(~rH � p)(p� ~rL)

�
= �(p� ~rL)2 � 0 (4)
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Suppose next that L (~q; ~rH ;w) < maxrH2(p;1] L
�
p
rH
; rH ;w

�
: Since by (4), L (~q; ~rH ;w) �

0 while

L
�
p

rH
; rH ;w

�
=
p

rH
[rH � (1� w)]�

�

n
� p

rH � p
(rH � p)2 (5)

it must be that any r0H 2 argmaxrH L
�
p
rH
; rH ;w

�
is greater or equal to 1�w (otherwise,

maxrH2(p;1] L
�
p
rH
; rH ;w

�
< 0;a contradiction). The expression on the R.H.S. of (5) has

a unique maximizer equal to
p

n
k
(1� w): For this to be greater or equal to 1�w it must

be that n � �; a contradiction.
The only remaining corner solution is rH = 1: Recall that by Lemma A0, L̂(rH ; w) =

�(p � r̂L(rH ; w))2. The fact that L̂ is maximized at ~rH implies that r̂L(rH ; w) attains a
minimum at ~rH(w) < 1. It follows that

L̂(1; w) = �(p� r̂L(1; w))2 < �(p� r̂L(~rH ; w))2 = L̂(~rH ; w).

Since L̂(~rH ; w) and L̂(1; w) are the values of the Lagrangian when rH attains the values
~rH and 1, respectively (where q is optimally determined according to FOCq) the proof is

complete. �

Lemma A2. If an interior solution (~q; ~rH) exists but is wasteful, then in the optimal
solution, r�H = 1� �(n�m+1).

Proof. For any value of rH and w, de�ne q̂ (rH ; w) to be the value of q that satis�es

L1 (q; rH ;w) = 0 and de�ne r̂L (rH ; w) � p�rH �q̂(rH ;w)
1�q̂(rH ;w) to be value of rL that is determined

by rH and q̂ (rH ; w). Therefore,

rH � (1� w)�
�

n
�
�

rH � p
1� q̂ (rH ; w)

�2
= 0

Solving for q̂(rH ; w) yields

q̂(rH ; w) = 1�
rH � pp

n
�
� (rH + w � 1)

Since r̂L(rH ; w) = (p� q̂(rH ; w) � rH)=(1� q̂(rH ; w)) the above equation is equivalent
to

rH � (1� w)�
�

n
(rH � r̂L(rH ; w))2 = 0
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We can therefore solve for r̂L to obtain

r̂L(rH ; w) = rH �
r
n

�
[rH � (1� w)] (6)

From (6) we can derive the following three properties of the function r̂L (rH ; w):

(P1) For any w, the function r̂L (rH ; w) attains a minimum at ~rH . Since

@

@rH
r̂L(rH ; w) = 1�

1

2

r
n

�
(rH + w � 1)�

1
2

we have that

@

@rH
r̂L(rH ; w) = 0() 1 =

n

4�
� 1

rH + w � 1
() rH =

n

4�
+ 1� w = ~rH(w)

Since
@2

@rH@rH
r̂L(rH ; w) =

1

4
(rH + w � 1)�

3
2 � 0

we have that ~rH(w) is a minimum point.

(P2) For any w, the function r̂L (rH ; w) is convex in rH . This follows from @2

@rH@rH
r̂L(rH ; w) �

0:

(P3) For any rH , the function r̂L (rH ; w) is decreasing in w. This follows from the

R.H.S. of (6).

We have thus established that for any w, the function r̂L (rH ; w) is convex in rH and

attains minimum at ~rH . Hence, for all values of rH � 1 � �(n�m+1) > ~rH the function

r̂L (rH ; w) is increasing in rH . Recall that L̂(rH ; w) = �(p� r̂L(rH ; w))2 where L̂(rH ; w)
is the value of the Lagrangian for any rH , when q is determined according to (FOCq). It

follows that when rH is restricted to the domain
�
1� �(n�m+1); 1

�
the maximum of L̂ is

attained when rH = 1 � �(n�m+1). Thus, r�H (�1; �2) = 1 � �(n�l+1), which completes the
proof. �

PART II. We now turn to show that q� (�; �) is increasing in each player�s type while
r�H (�; �) and r

�
L (�; �) are decreasing in each player�s type. Fix ��i and �. Suppose that

�0i > �i and denote w � w (�i; ��i; �) and w0 � w (�0i; ��i; �) so that w0 > w.
If (~rH (�; �) ; ~q (�; �)) is not interior, then no signal is acquired when the agents report

�, i.e. q� (�; �) = 0 and r�L (�; �) = p. Without loss of generality we can assume that
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in this case r�H (�; �) = 1, and it immediately follows that q� (�0; �) � q� (�; �) and

r�L (�
0; �) � r�L (�; �) and r�H (�0; �) � r�H (�; �).
We therefore assume that (~rH (�; �) ; ~q (�; �)) is interior. As we explain in the main

text, this also implies that (~rH (�0; �) ; ~q (�0; �)) is interior. Note that: (1) ~rH and ~rL,

as given by Equations (1) and (3) are decreasing in w (�i; ��i; �), (2) w (�i; ��i; �) is

increasing in �i and (3) ~q is decreasing in ~rL and decreasing in ~rH for all ~rL � p � ~rH .

These properties, together with Lemmas A1 and A2, ensure that the remainder of the

proof is the the same as in the proof of Proposition 2, with the obvious adjustments to

the case of the variance cost.

PART III. From the Lemmas A1 and A2, it follows that for any � � 0 and for each

pro�le of types �; the values q�(�; �) and r�H(�; �) that maximize L (q; rH ;w) satisfy that
q�(�; �) is unique and r�H(�; �) is unique whenever q

�(�; �) > 0 (i.e., whenever a signal is

purchased). We have also established that q�(�; �) is monotone in any �i. It remains to

show there exist � � 0 for which q�(�; �) and r�H(�; �) induce a non-negative expected

aggregate virtual surplus. This follows from the same arguments given in the proof of

Proposition 2.

This completes our proof.
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2 Properties of the cost function

c (q; rH)

�
= q

�
rH log

rH
p
+ (1� rH) log

1� rH
1� p

�
+ (1� q)

 
p� q � rH
1� q log

p�q�rH
1�q

p
+

�
1� p� q � rH

1� q

�
log

1� p�q�rH
1�q

1� p

!

= q

�
rH log

rH
p
+ (1� rH) log

1� rH
1� p

�
+ (1� q)

�
rL log

rL
p
+ (1� rL) log

1� rL
1� p

�
c1 (q; rH)

�
= rH

 
ln

rH
p�qrH
(1�q)

!
+ (1� rH)

 
ln

1� rH
1� p�qrH

(1�q)

!

= rH

�
ln
rH
rL

�
+ (1� rH)

�
ln
1� rH
1� rL

�
c2 (q; rH)

�
= �q

 
ln
1

rH
(rH � 1)

p�qrH
(1�q)

p�qrH
(1�q) � 1

!
= q

�
ln
rH
rL

1� rL
1� rH

�
c11 (q; rH)

�
=

(p� rH)2

(1� q)3
�
1� p�qrH

(1�q)

�
(p�qrH)
(1�q)

=
(p� rH)2

(1� q)3 (1� rL) rL
=
1

rL

(rH � rL)2

(1� rL) (1� q)

c22 (q; rH)

�
=

q

rH (1� rH)
� (p�qrH)

(1�q) �
(1�q)qrH(1�rH)

(1�q)2 + (p�qrH)2

(1�q)2

(p�qrH)
1�q

�
p�qrH
1�q � 1

�
=

q

rH (1� rH)
+

q

rL (1� rL)
� q

1� q

c12 (q; rH)

�
=

0@ln rH
�
p�qrH
(1�q) � 1

�
(rH � 1) (p�qrH)(1�q)

1A+ q (p� rH)
(1� q)2

�
p�qrH
(1�q)

��
p�qrH
(1�q) � 1

�
=

�
ln
rH
rL

1� rL
1� rH

�
+

q (p� rH)
(1� q)2 (rL) (rL � 1)

=

�
ln
rH
rL

1� rL
1� rH

�
+

q

rL (1� rL)
rH � rL
(1� q)
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