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Abstract
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1 Introduction

Consider the following decision problem faced by a principal who repeatedly interacts

with two agents. Each period, the principal faces a new task and needs to select one

of the two agents to carry it out. At the start of a period, each agent privately learns

if he is qualified for the current task (or, under an alternative interpretation, has

enough time to perform it well), and decides whether to apply to do it. The principal

can select only among the submitted applications. A completed task generates either

a high or low profit for the principal, while a task that is unassigned generates zero

profit. The agent assigned to a task, and the profit he generates, is publicly observed

by all. A qualified agent is more likely to generate high profit than an unqualified one,

but the principal is unable to observe qualification. The principal wants to maximize

the expectation of her (average) discounted sum of profits, while each agent wants to

maximize the (average) discounted number of times he is selected. The only action

the principal can take each period is which applicant, if any, to select; there are no

transfers. Moreover, she cannot commit in advance to any plan of action. What is

the best outcome the principal can attain in equilibrium, and how?

This abstract problem shares stylized features with many economically relevant

situations. Consider a manager who must decide which employee to assign to a new

project or client; a politician in office who needs to designate a staffer in charge of new

legislation; or an organization that needs someone to direct a new initiative. Often-

times, such employees receive a monthly salary or fixed payment per task. Interested

employees may be required to communicate their availability, provide some evidence

of serious intention, or pitch their vision for the project at hand. Alternatively, one

can think of situations where the agents propose ‘ideas’ to a decision-maker. For

instance, think tanks and researchers submit proposals for a grant; engineers suggest

directions for new versions of a product. The problem can also be interpreted as a

stylized representation of a median voter choosing between office-driven politicians in

each election. More generally, our model can be viewed as the repetition of a stage

game with the classic, persuasion payoff structure: the principal wants to choose the

most qualified agent available, while each agent simply wants to be chosen.

In the benchmark model, each agent i has a commonly known ‘ability’ parameter

θi, which is his probability of being qualified for each new task (each period agent

i makes a new, independent draw of his qualification). The realized profit from the
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project can be either high or low. A qualified agent who is selected generates high

profit with probability γ ∈ (0, 1). An unqualified agent generates high profit with a

strictly smaller probability β ∈ [0, γ), but expected profit is nonnegative. Both agents

share the same discount factor δ, and both receive a payoff of one whenever they are

selected. The principal’s first-best outcome is to pick the most qualified agent in

every period. Our first main result in Section 2 concerns the principal’s ability to

attain her first-best in a perfect public equilibrium (PPE). We characterize the full

set of parameter values (θ1, θ2, β, γ, δ) for which the first-best is attainable in PPE.

In addition, we identify a simple strategy profile, dubbed the Markovian Last Resort

(MLR), that achieves the first best whenever it is feasible; that is, over the entire set

of parameter values that we characterized.

The MLR strategy profile can be described as follows. At each history, one agent

is designated as the agent of last resort, and the remaining agent is designated as

discerning. The agent of last resort proposes himself regardless of whether he is

qualified, while the discerning agent proposes himself if and only if he is qualified. The

principal selects the agent of last resort if he is the only one available, and otherwise

picks the discerning agent. The first agent of last resort is chosen arbitrarily, and he

remains in that role so long as all the principal’s past profits were high. Otherwise,

the agent of last resort is the most recent agent who generated a low profit.

The MLR profile has a number of appealing features. First, it requires players to

keep track of very little information: they need only know who was the last agent to

generate low profit. Second, it does not require the agents to punish the principal

(who is the mechanism designer) to ensure she follows the strategy: MLR remains

an equilibrium even when the principal’s discount factor is zero. Third, it is robust

to privately observed heterogeneity in the agents’ abilities. To demonstrate this, we

enrich our benchmark model by having each agent privately draw his ability from the

interval [θ, 1]. We characterize the parameters (θ,β, γ, δ) for which the principal’s first-

best is attainable in a belief-free equilibrium, in the sense that it constitutes a PPE

for any pair of realized abilities. Moreover, we show that whenever the parameters

belong to this set, the MLR profile attains the first-best in a belief-free equilibrium.

In Section 3, we turn to analyze the challenging case of more than two agents. The

MLR strategy profile easily generalizes to this case: the only modification needed is

that whenever two or more discerning agents propose themselves, the principal chooses

one of them at random. Clearly, the MLR profile delivers the first-best outcome for
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the principal, and the only question remaining is when it constitutes an equilibrium.

We first note that it is impossible to attain the principal’s first-best in PPE (or even

in Nash equilibrium) if the highest ability among the agents is below 1 − n−1

√
1
n
.

We then characterize the sets of parameters for which the MLR profile constitutes a

PPE and a belief-free equilibrium. We know that for any profile of abilities strictly

superior to 1− n−1

√
1
n
, the MLR will be an equilibrium when agents are patient enough

and realized profits are sufficiently informative of qualification. In that sense, we have

characterized the widest range of abilities for which first-best is achievable, and shown

that it is achievable by MLR. We do not know if the set of parameters where MLR is a

PPE corresponds to the widest set of all parameters for which first-best is achievable.

This is in contrast to the two-agent case, where we have such a characterization. The

difficulty stems from the fact that, unlike in the two-agent case, the shape of the set

of PPE payoffs is unknown. In particular, we do not know if it is feasible to bring

more than one agent to the lowest PPE payoff.1

This leaves open the question of whether some other strategy profile attains the

principal’s first-best in PPE for a wider range for parameters than MLR. To at least

partially address this question, we compare the performance of MLR with an intuitive

class of strategy profiles, which we call hierarchical. In a hierarchical strategy profile,

agents are assigned priorities, the lowest-priority agent serves as last resort while all

other agents are discerning, the principal picks the proposing agent with the highest

priority, and a discerning agent moves down the ranking if he generates a low profit,

with the ranking of agents with a higher priority than him unaffected. The MLR

profile can be thought of as a ‘flat’ hierarchy with only two tiers: the last resort is

at the bottom and everyone else has the same priority. Would more tiers help attain

the principal’s first-best in PPE for a wider range of parameter values? Focusing on

homogenous abilities, we show that (1) no hierarchical strategy profile ‘dominates’

MLR in the sense of attaining the first-best in PPE whenever MLR does, and (2)

MLR dominates any hierarchical profile that sends a ‘failing’ agent to the bottom of

the ranking.

There are numerous possible extensions of our benchmark model. In Section 4,

we briefly discuss how our analysis can accommodate agents who also care about

their performance; how to incorporate a continuum of profit levels; the implications

1Indeed, we are not aware of any work that fully characterizes the set of PPE payoffs in a setting
with incomplete information, no transfers and more than two players.
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of incurring losses (in expectation) when selecting an unqualified agent; and the effect

of imposing a refinement in the spirit of renegotiation-proofness (but tailored towards

problems of mechanism design), in which case we fully characterize the set of PPE

payoffs.

Our paper provides a thorough analysis of a common strategic dilemma: how

should one select the ‘right’ expert (idea, candidate) when the supply side mainly

cares about being chosen, and possesses private information pertinent for identifying

the right choice? While we naturally abstract from many details present in real-life

situations, many of these often share a few key features with our stylized model:

the decision-maker repeatedly faces the same group of individuals who want to be

selected, she cannot credibly commit to a decision rule and cannot make contingent

transfers. Our analysis identifies a simple and intuitive strategy profile that attains

the decision-maker’s first-best payoff whenever this is feasible, not just for the basic

model but for several variants. Its structure is independent of the parameters, and is

reminiscent of the tendency to avoid - whenever possible - choosing the most recent

individual to generate a disappointing result.

1.1 Related Literature

Our paper relates to several strands of literature. In our problem, the principal

uses a form of dynamic favoritism, the promise (threat) of future (dis)advantage,

as a means of aligning incentives. Strategic use of favoritism also arises in static

mechanism-design environments without monetary transfers. For example, in Ben-

Porath, Dekel and Lipman (2014), a principal allocates a good or task among multiple

agents, each of whom is privately informed about the principal’s value from allocating

it to him. In their static setting, the principal can pay a cost to learn a single agent’s

type before deciding who to select. They show all optimal mechanisms are essentially

randomizations over ‘favored-agent mechanisms’, which consist of a favored agent and

a threshold value. If all other agents report values below the threshold, the good or

task is allocated to the favored agent. Otherwise, the agent who reports the highest

value is checked, and receives the good if and only if his report is confirmed. In

our setting, by observing the profit from a selected agent, the principal receives for

free an imperfect signal about the truthfulness of the agent’s past claim. An agent

who is likely to have lied is then punished only in future allocations. It would be
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inefficient to never again pick an agent suspected of lying, and would also violate the

principal’s equilibrium incentive constraint. In fact, some form of redemption must

occur with positive probability in our dynamic setting: the principal must treat a

suspected liar less favorably by decreasing his discounted likelihood of being picked

in the future, but others will be suspected of lying in the future since profits provide

only an imperfect signal. Despite terminology, the last resort agent in our MLR

strategy shares some similarity with the favored agent in Ben Porath et al. A novelty

in our approach is to select who that agent will be based on past realizations. For a

wide range of parameters, the first best allocation becomes achievable even if types

are not verifiable. Should types be verifiable at a cost, as in Ben Porath et al., our

paper suggests that the principal can oftentimes save on these costs when interacting

repeatedly with the agents, by conditioning her future allocation rule.

The problem we study may be thought of as dynamic mechanism design with-

out transfers when the planner is a player (and therefore, cannot commit). In our

model, there is no institutional device that enables the principal to credibly commit

to a policy, and the agents’ payoffs cannot be made contingent on the payoff to the

principal. Among other settings, these features arise in political environments where

voters (or a median voter) elect one of multiple candidates to an office. A number of

papers study infinitely repeated elections in which candidates have privately known

types. According to a recent survey by Duggan and Martinelli (2017), this literature

has remained small due to the “difficult theoretical issues related to updating of voter

beliefs,” and has examined various restrictions to simplify this difficulty. There are

structural differences between our framework and this literature. Banks and Sun-

daram (1993,1998), for instance, include moral hazard and model private information

as being persistent. By contrast, our model has persistence in the agent’s underlying

ability, and the agents’ private qualification varies over time.

The recent literature on dynamic mechanism design with neither transfers nor

commitment includes Lipnowski and Ramos (2016) and Li, Matouschek and Powell

(2017). Both study an infinitely repeated game in which a principal decides whether

to entrust a task to a single agent, who is better informed. Both papers predict

different and interesting non-stationary dynamics in equilibrium. By contrast, the

competition between agents in our model is a driving factor in the results: if there

were only one agent, the principal could achieve no better than having him propose

regardless of qualification.
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Our paper relates to a small literature on relational contracts with multiple agents.

Board (2011) and Andrews and Barron (2016) study how a principal (firm) chooses

each period among multiple contractors or suppliers whose characteristics are per-

fectly observed by the principal, but whose post-selection action is subject to moral

hazard. Both papers allow the use of transfers. Board (2011) considers a hold-up

problem, where the chosen contractor each period decides how much to repay the

principal for her investment. Assuming the principal can commit to the selection

rule, Board shows that it is optimal to be loyal to a subset of ‘insider’ contractors,

because the rents the principal must promise to entice the contractor to repay act as

an endogenous switching cost. This bias towards loyalty extends when the principal

cannot commit, so long as she is sufficiently patient. Relaxing Board’s assumption

of commitment and introducing imperfect monitoring in the moral hazard problem,

Andrews and Barron (2016) consider a firm who repeatedly faces multiple, ex-ante

symmetric suppliers. The firm and suppliers use a common discount factor. A sup-

plier’s productivity level is redrawn each period but is observable to the principal.

The principal approaches a supplier and, upon agreeing to the relationship, the sup-

plier makes a hidden, binary effort choice yielding a stochastic profit for the principal.

Each supplier observes only his own history with the principal. They suggest an allo-

cation rule, the ‘favored supplier’ rule, and characterize the range of discount factors

for which it is part of an equilibrium that attains first-best. They provide additional

parameter restrictions which guarantee no equilibrium attains first-best for lower dis-

count factors. The favored supplier rule has the feature that in every period, the

principal chooses the supplier with the highest observed productivity level, breaking

ties in favor of whoever most recently yielded high profit.

There are several interesting differences between these two papers and ours. First,

in our environment the principal cannot use transfers as a means of aligning incen-

tives. Second, we study a problem of adverse selection: the principal cannot observe

the distinguishing characteristic – the agents’ qualification for the task at hand. In

our model, an aim of the principal’s selection rule is to influence her set of proposers;

thus the set of possible agents in each period is endogenous to the problem. Addi-

tional features distinguishing our analysis from Andrews and Barron (2016) is that

we provide a full characterization of first-best for the two-agent case and allow for

ex-ante asymmetric agents. Without any restriction on the parameters, we show

that the MLR attains first-best if and only if first-best is attainable. Interestingly,
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in contrast to the MLR, Andrews and Barron’s favored-supplier rule “favors past

success and tolerates past failure.” In their environment, monetary incentives allow

the principal to punish by way of withholding compensation while rewarding through

future promises. In our environment, where monetary incentives are absent, these

dynamics are reversed - the principal does not tolerate past failure, and does not

favor past success. Furthermore, Andrews and Barron point out that if they were to

relax private monitoring, the agents could collectively punish the principal and the

optimal allocation rule would become stationary. By contrast, our results rely on the

history being at least partially public (the identity of the current agent of last resort

must be known to all players), and the MLR does not rely on punishing the principal:

whenever it is an equilibrium, it remains so for any discount factor of the principal,

even if she is fully myopic.

Our first-best analysis relates to Athey and Bagwell (2001), where two colluding,

ex-ante symmetric firms play a repeated Bertrand game and are privately informed

about their respective costs. In a binary-types model, they show that the firms

can use future “market-share favors” in order to achieve first best payoffs. Besides

differences in the game structure, a key feature distinguishing our analysis is our

derivation of a condition (on all parameters) that is not only sufficient for first best,

but also necessary. Since our focus is on features of the equilibrium strategy profiles

rather than properties of the equilibrium payoff set, this condition plays a crucial role

and allows us to show that the MLR strategy profile attains first best whenever it

is attainable. Whereas the general approach of the collusion literature has been to

model problems of private information on costs and imperfect monitoring of prices

separately, in our model both agents’ actions (whether or not to propose) and their

performance (a signal of their qualification) are observable, and neither perfectly

reveals a deviation. Lastly, our characterization of first best allows for heterogeneity

across agents.

Finally, our work is also related to the literature on “trading favors” originating

in Mobius (2001) and Hauser and Hopenhayn (2008), where players have private

opportunities to do favors for one another. Among other differences, an important

distinguishing feature is that in this literature the players benefit (in the stage game)

at the expense of one another.
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2 A Model

There is one principal and two agents, 1 and 2. Each period t = 0, 1, 2, ... there is

a new task (or project) available, and the principal can choose at most one agent to

carry it out. The principal’s profit from a project is either high (H) or low (L), where

H > L, and depends stochastically on whether or not the agent assigned to carry it

out is qualified to do so. A qualified agent has probability γ ∈ (0, 1) of generating

high profit for the principal; while a non-qualified agent generates high profit with a

strictly smaller probability β ∈ [0, γ). We assume βH + (1 − β)L ≥ 0 , so that the

principal prefers to hire a non-qualified agent over hiring no one. In each period t,

the probability that agent i is qualified for the t-th project is constant and equal to

θi ∈ [θ, 1), where θ > 0. Thus, the parameter θi captures the ability of agent i. Each

agent privately observes whether he is qualified for the specific project at hand, but

the agents’ general abilities (the probabilities θ1 and θ2) are commonly known.

In every period, the stage game unfolds as follows. Each agent privately observes

whether he is qualified for the current project, and decides whether to submit a

proposal to the principal. The principal then decides which agent, if any, to select.

Agent i gets a positive payoff in period t if the principal picks him in that period.

We normalize this payoff to one (having a different payoff for each agent has no effect

on our analysis). Agent i’s objective is then to maximize the expectation of the

discounted sum
∑∞

t=0 δ
t1{xt = i}, where δ is each agent’s discount factor, 1{·} is the

indicator function and xt ∈ {1, 2}∪ {∅} is the identity of the agent that the principal

picks in period t, if any. That is, each agent simply wants to be selected regardless

of the end profit from the project.

The principal’s profit in a given period is zero if she does not choose any agent, and

is otherwise equal to the realized profit from the project. Her objective is to maximize

the expectation of the discounted sum
∑∞

t=0 δ
t
0yt, where δ0 is the principal’s discount

factor and yt ∈ {0, L,H} is her period-t profit.

The agents’ proposal decisions, the agent chosen by the principal (if any), and the

realized profit are all publicly observed.2 We define a public history at any period t as

the sequence ht = ((x0, y0, S0), . . . , (xt−1, yt−1, St−1)), where Sτ ⊆ {1, 2} ∪ {∅} is the

set of agents who made a proposal in each period τ < t and, as defined above, xτ and

2As we will show, our results would not change if players could only observe the identity of the
last agent who generated a low profit for the principal.
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yτ denote the chosen agent and the profit he generated. A public strategy for agent i

determines, for each period t, the probability with which he makes a proposal to the

principal as a function of his current qualification and the public history of the game.

A public strategy for the principal determines, for each period t, a lottery over which

agent to select (if any) from among the set of agents who propose, given that set of

proposers and the public history of the game. We apply the notion of perfect public

equilibrium (PPE), that is, sequential equilibria where players use public strategies.

We view this game as a mechanism design problem without commitment. The

principal wants to design a selection rule to maximize her payoff, but cannot commit

to a rule. Instead, her rule must be justified endogenously, as an optimal response

to that of the agents in equilibrium. The principal cannot influence nature (the

probability that each agent is qualified, and the stochasticity of profit), but would

ideally like to overcome the incentive problem of agents. The first-best outcome from

the principal’s point of view is to be able to select, in every period, the qualified agent

whenever one exists, and any agent otherwise.

Discussion. A proposal in our model can be thought of as a packet of documents

that lays out a detailed plan. Figuring out which agent is better qualified prior to

making the selection is time consuming and costly for the principal. However, we will

show that the principal may take advantage of the repeated nature of her interactions

with the agents to reach her first-best, even when her time is very limited and she

cannot review the agents’ proposals before making a selection. There is thus no need

to explicitly model a proposal-review stage or review-cost function to make this point.

Furthermore, the assumption that agents simply want to be selected regardless of the

end profit from the project may capture situations where agents want to accumulate

experience, build a resume, or obtain certain resources associated with carrying out

a project, and where the principal’s payoff from a project cannot be verified by an

outside party.3

There are several key features in our model. First, there is no institutional de-

vice that enables the principal to credibly commit to a selection policy. Second, the

principal is better off selecting some agent than not selecting any. The idea is that

the loss from not performing a task overweighs the loss from not doing it perfectly.4

3Our analysis would not change if each agent i also received some fixed bonus λ when profits are
high (see Section 4), but would be considerably more tedious. The proof of Proposition 1 actually
allows any λ ≥ 0.

4In Section 4, we discuss the case where selecting an unqualified agent leads to expected losses.
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Third, the principal cannot pick an agent who has not submitted a proposal. This

captures situations where either institutional norms or explicit rules require an agent

to give tangible evidence for his ability to take on the project and to explicitly lay out

his plans. Finally, the principal cannot sign complete contracts with the agents that

specify transfers as a function of profits. This feature captures situations where either

the principal’s payoff cannot be verified by an outside party (e.g., it may include in-

tangible elements such as perceived reputation), or because of institutional contraints

that preclude such contracts (as in most public organizations where subordinates, who

receive a constant wage, may propose themselves to an executive decision maker).

2.1 Main result

A strategy profile achieves the principal’s first-best if a qualified agent is chosen in

every period where at least one agent is qualified, and some agent is chosen in all

other periods.5 Our main result consists of two parts. First, it provides a complete

characterization of the parameter values for which the principal can attain the first-

best in any PPE. Second, it shows that a simple strategy profile, which we next

introduce, attains the first-best PPE payoff over the entire region of parameters for

which a first-best PPE exists.

Definition 1 (The Markovian Last Resort (MLR) Strategy Profile). At each history,

one agent is designated as the agent of last resort, and the remaining agent is desig-

nated as discerning. The agent of last resort proposes himself independently of his

qualification, while the discerning agent proposes himself if and only if he is quali-

fied. The principal selects the agent of last resort if he is the only one available, and

otherwise picks the discerning agent. The identity of the initial agent of last resort is

chosen arbitrarily, and remains in that role so long as all the principal’s past profits

were high. Otherwise, the agent of last resort is the most recent agent who generated

low profit for the principal.

Clearly, the principal achieves her first best if she and the agents follow the MLR

strategy profile. She is sure to select an agent each period, and will select a qualified

agent whenever one exists. The question then is, under what condition is this profile

a PPE?

5Of course, the principal would prefer picking only high-profit proposals when possible, but no
one knows at the selection stage whether high profit will be realized.
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Proposition 1. (a) A PPE that attains the principal’s first-best exists if and only if

δ ≥ 1

β + (θ1 + θ2) (γ − β)
. (1)

(b) The MLR strategy profile is a PPE if and only if (1) holds. Hence, there is a

strategy profile attaining first-best in PPE if and only if the MLR profile attains it.

This result implies that the first-best is attainable in equilibrium when agents are

patient enough if and only if the agents are sufficiently able, in the sense that:

θ1 + θ2 >
1

ι
(2)

where ι = γ−β
1−β = 1− 1−γ

1−β < 1 measures how informative low profits are of qualification.

The key incentive constraint, which generates condition (1), is the one facing an

unqualified discerning agent. This constraint explains why the incentives for player i

are determined both by θi and θ−i: When agent i is discerning, the probability with

which he is selected is θi, but he must also consider the case in which he becomes last

resort, and the likelihood of exiting that role is determined by θ−i.

Since abilities matter through their sum, the marginal contribution of having a

second agent - even of low ability - can be significant, so long as (1) holds. Suppose

agent 1 has rather high ability, say θ1 = 3/4. If he is the only agent, then the

principal has no means to incentivize him: he will submit a proposal independently

of his qualification, and in the first-best the principal achieves an expected payoff of

3/4H + 1/4L. However, if there were an additional agent - even one with a much

lower ability, say slightly higher than 1/4 - the expected payoff to the principal in

the new first-best equilibrium increases to (15/16)H + (1/16)L, which is significantly

higher than the principal’s first-best equilibrium with only a single agent.

To understand why the MLR attains the first-best for the widest range of param-

eters, note that in any period, exactly one agent is discerning and one is last-resort.

As shown in the proof, the last-resort agent is worse off than the discerning agent.

Hence, the harshest possible punishment is to keep an agent as last-resort for as long

as possible, conditional on motivating the other agent. The best possible reward is to

make an agent discerning for as long as possible, conditional on motivating him. MLR

does both. Note that the MLR treats agents with different abilities symmetrically.

The reason is that although agents are asymmetric in expectation, they are identical

conditional on being qualifed (or unqualified).
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The proof, in the Appendix, proceeds as follows. We first observe that if the

principal attains the first-best, then the following must be true. At each history h,

there is an agent i(h) who proposes regardless of his qualification, while the other

agent (the ‘discerning’ agent) proposes if and only if he is qualified. The principal

picks the discerning agent whenever he makes a proposal, and picks i(h) otherwise.

We thus refer to agent i(h) as the agent of ‘last resort.’ This structure allows us to

write the equilibrium payoff of an agent, both when he is last-resort and when he is

discerning, as a function of the continuation payoffs following the selection of some

agent and the profit level he generates (in the first-best path, an agent is picked in

each period).

We then proceed in several steps, to identify a condition on the parameters nec-

essary for the existence of a first-best equilibrium.6 Assuming first-best equilibria

exist, denote by σi, σi the minimal and maximal payoffs each agent i can obtain in a

first-best equilibrium given the parameters.7 We first find continuation payoffs that

minimize agent i’s first-best equilibrium payoff subject to the incentive constraints

that a discerning agent does not propose himself when he is unqualified (ignoring the

constraint that an agent should propose when he is qualified, which can only raise

the equilibrium payoff), the feasibility constraints on the continuation payoffs of both

agents implied by (σ1, σ1, σ2, σ2), as well as the observation that the agents’ payoffs

must sum up to one in the first-best. We guess that an agent’s payoff in the principal’s

first-best equilibrium is minimized when he is the agent of last resort (we later verify

this), and argue that when the last-resort agent’s payoff is minimized, the incentive

constraint of the discerning agent must be binding. Using this binding constraint, we

solve for σi as a function of the parameters and the maximal equilibrium payoff σi.

This leads to two cases, corresponding to two possible solutions for σi, depending on

which of the feasibility constraints on the continuation payoffs bind.8

6Following Abreu, Pearce, and Stacchetti (1990; henceforth, APS), the equilibrium payoff set
is the largest self-generating set. However, this property by itself does not guarantee an explicit
characterization of the equilibrium payoff set as a function of the parameters. The crux of the proof
is to use the property to derive a necessary condition for the existence of first-best equilibria, as a
function of the model’s parameters.

7Following APS, the set of PPE payoffs is compact. Hence, if the set of first-best PPE payoffs is
non-empty, such minimum and maximum payoffs exist. Note that since agents are not symmetric,
their maximal and minimal payoffs need not coincide.

8The minimization of agent i first-best payoff involves increasing his continuation payoff when
the other agent generates a high profit while decreasing his continuation payoff when the other
agent generates a low profit. These continuation payoffs are both constrained by σi and σi, and
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The second step is analogous to the first, except that we find the continuation

payoffs that maximize agent i’s equilibrium payoff subject to the incentive constraint

that a discerning agent does not propose himself when he is unqualified, the feasibility

constraints on the continuation payoffs of the agents, and the observation that the

agents’ payoff must sum up to one in the first-best. We derive an expression for

the maximal equilibrium payoff σi as a function of the parameters and the minimal

equilibrium payoff σi (again, two different potential solutions must be considered).

In the third step we consider the four possible solutions for (σi, σi) and show that

the inequality (1) is necessary for each of them, and hence necessary for the existence

of a first-best equilbrium. Finally, we verify that it is indeed the case that σi (σi) is

attained when an agent is discerning (last resort).

To show that condition (1) is also sufficient for attaining the principal’s first-best

in a PPE, we argue that the MLR profile is indeed a PPE if and only if (1) holds.

The MLR profile, despite using very little information about the environment

and history of past play, attains the first-best PPE payoff over the entire region of

parameters for which a first-best PPE exists. It also has several desirable properties.

First, the principal and the agents need not observe, nor remember, much information

about past behavior. At any history, the principal’s selection decision is based only on

the identity of the current last resort agent – which changes if and only if a discerning

agent fails – and the set of agents who propose. In particular, past proposals play no

direct role, and high profit realizations do not trigger changes in the identity of the last

resort agent. Furthermore, despite heterogeneity in agents’ abilities, the principal’s

strategy does not bias selection decisions based on these differences.

Second, the principal’s selection rule is optimal for her (thereby providing endoge-

nous commitment) without relying on the agents to punish her if she deviates from it.

While efficient equilibria in the literature often rely on any deviator to be punished

by others, in our environment we would find it unnatural if the principal were to

follow her part of an equilibrium that achieves her first best only because she fears

the agents will punish her otherwise. Indeed, the MLR strategy profile remains a

PPE independently of the principal’s discount factor δ0.

Third, the MLR addresses questions of equilibrium robustness. From the analysis

in Proposition 1, it is clear that the MLR strategy profile is in fact an ex-post PPE

different solutions to the minimization problem may arise depending on which of the constraints on
the continuation payoffs binds.
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whenever (1) holds: Taking expectations over the future path of play, each agent’s

proposal decision remains optimal irrespective of his belief about the other agent’s

current private information (i.e., whether the other agent is qualified or not).9 In light

of Proposition 1, such robustness comes for free in our environment. In an ex-post

equilibrium, stringent (simultaneous and private) communication protocols are not

necessary.10 Such robustness is particularly relevant for environments where it may

be difficult or undesirable to restrict how agents share information with one another.

Finally, as we show below, the MLR strategy profile achieves the principal’s first

best in a belief-free way when there is uncertainty about the agents’ abilities. Suppose

the principal has little information about agents’ abilities and would like to guarantee

her first-best outcome in all realizations. The notion of belief-free equilibrium directly

addresses the question of equilibrium robustness to such information.11 A strategy

profile is a belief-free equilibrium if it forms a PPE for any realized pair of abilities in

[θ, 1]2. From condition (1), it follows that the first best becomes harder to attain in

PPE (in the sense of having a smaller range of parameter values for which the first-

best is attainable) the lower is sum of the abilities of the agents. Hence, first-best is

attainable in PPE for every possible realization of (θ1, θ2) if and only if (1) holds for

θ1 = θ2 = θ. Combined with Corollary 1, this implies the following result.

Proposition 2. A belief-free equilibrium that attains the principal’s first-best exists

if and only if

δ ≥ 1

β + 2θ(γ − β)
. (3)

The MLR strategy achieves the objective when that condition holds.

It is worth noting the MLR strategy profile’s simplicity in comparison to other con-

ceivable strategies when information about abilities is incomplete. As in bandit prob-

lems, the principal could try to balance learning agents’ abilities and exploiting the

agent she currently believes has highest ability. The difficulty is that agents respond

strategically to the principal’s selection rule, which can impact her ability to learn.

9Such notions of equilibrium, imposing ex-post incentive compatibility in each period taking
expectations over the future path of play, were introduced separately by Athey and Miller (2007)
and Bergemann and Valimaki (2010). The latter use the term “periodic ex-post.” Miller (2012)
considers ex-post PPE in a model of collusion with adverse selection.

10Such ex-post equilibria are also robust to the introduction of payoff-irrelevant signals and high-
order beliefs; see Bergemann and Morris (2005).

11Equilbria here are “ex-post” with respect to the agents’ abilities rather than the realization of
the agents’ private information.
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Continuing the analogy with bandit problems, whether an arm is available to pull

becomes endogenous, and may vary at equilibrium with the principal’s strategy. The

MLR strategy profile simplifies the problem by using this feature to the principal’s

advantage: there is no need to learn the agents’ abilities, and the first-best is achieved,

if one agent is provided incentives to submit proposals only when qualified.

3 Many agents

In the previous section we established that when the principal faces two agents, there

is a simple and intuitive strategy profile - the MLR - that attains the principal’s

first-best in PPE whenever the first-best is attainable in PPE.

In this section, we examine how some of our results generalize when there is a

set A = {1, 2, . . . , n} of n ≥ 2 agents, with ~θ denoting the vector of these agents’

abilities. Our first observation identifies a necessary condition for the existence of any

PPE that attains the principal’s first-best. To present this result, define the threshold

ability level θ∗ = 1 − n−1

√
1
n
, which decreases in n (starting from 1/2 for n = 2) and

tends to 0 as n tends to infinity.

Proposition 3. If maxi∈A θi < θ∗, then there is no PPE (and even no Nash equilbir-

ium) that attains the principal’s first-best.

When is the first-best is achievable, and how can the principal achieve it? To start

answering these questions, we observe that the underlying principle from our earlier

analysis generalizes to n ≥ 2 agents: at each history h, there must be n−1 discerning

agents each of whom proposes himself if and only if he is qualified, and one agent of

last resort who proposes himself irrespective of his qualifications.

We will generalize the MLR strategy by treating all the n− 1 discerning agents in

a symmetric manner, with the principal randomizing uniformly when selecting among

discerning agents who have proposed. We will show that in the many agents case,

MLR constitutes a belief-free equilibrium for sufficiently patient agents if and only if

all agents have ability strictly higher than the threshold ability θ∗. Along the way, we

find a necessary and sufficient condition for the MLR to form a PPE when θi > θ∗ for

all agents i. Finally, we will consider the ‘optimality’ of this generalization of MLR

in terms of whether another strategy profile is capable of sustaining the principal’s

first best in PPE for a wider range of parameters. In particular, we show that there
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is no domination relationship with some ‘hierarchical’ strategy profiles, in which the

principal does not treat discerning agents symmetrically.

3.1 Characterizing when MLR is a PPE

Under the MLR strategy generalized to n ≥ 2, the behavior prescribed for the prin-

cipal and agent of last resort are clearly best responses to the discerning agents’

strategies. The only question is whether a discerning agent is willing to propose

himself when qualified, and refrain from proposing when not. The main difference

between having two or many agents play the MLR is that a discerning agent’s payoff

depends on the abilities of other discerning agents, through how often the others pro-

pose. A discerning agent’s payoff is thus impacted by which of the n− 1 other agents

is removed from the discerning pool to serve as the agent of last resort.

To understand incentives, we must thus understand the probability a given agent

is selected under these different possible circumstances. We denote by ρi(~θ) the

probability i is picked when he is the agent of last resort. When ` is the agent of

last resort, we denote by σi(~θ, `) the probability that a discerning agent i is picked,

conditional on him proposing. When ` is the agent of last resort, we let pj(~θ, i, `)

denote the probability that a discerning agent j is picked, conditional on another

discerning agent i proposing but not being picked. Finally, when ` is the agent of

last resort, we let qj(~θ, i, `) denote the probability a discerning agent j is picked,

conditional on the discerning agent i not proposing. These probabilities are given by:

ρi(~θ) =
∏
k 6=i

(1− θk),

σi(~θ, `) =

∑
S⊆A\{`}:i∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
θi

,

pj(~θ, i, `) =

∑
S⊆A\{`}:i,j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)

θi(1− σi(~θ, `))
,

qj(~θ, i, `) =

∑
S⊆A\{i,`}:j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
1− θi

.

The expression for ρi(~θ) follows because a last resort agent is selected under the

MLR strategy profile if and only if all discerning agents are unqualified. To under-

stand the expression for σi(~θ, `), observe that while agent i’s proposal is selected

uniformly among any set of discerning agents’ proposals, we must consider all dif-
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ferent possible sets of proposers and their probabilities. The probabilities ρi(~θ) and

σi(~θ, `) are needed to characterize the equilibrium value functions of agents. The

final two probabilities pj(~θ, i, `) and qj(~θ, i, `), whose expressions follow from similar

reasoning, will be needed to capture incentive conditions.

With these probabilities in mind, we turn our attention to understanding agents’

payoffs and their resulting incentives. We denote by V D
i (~θ, `) agent i’s average dis-

counted payoff under the MLR strategy profile when he is discerning and agent ` is the

agent of last resort. We denote by V LR
i (~θ) agent i’s average discounted payoff under

the MLR strategy profile when he is the agent of last resort himself. These are jointly

determined by the following recursive system of equations for all possible agents ` 6= i:

V LR
i (~θ) =

i is
chosen︷︸︸︷
ρi(~θ)

(
(1− δi)ui + δV LR

i (~θ)
)

+
∑
j 6=i

j chosen when
i is last resort︷ ︸︸ ︷
θjσj(~θ, i)

(
γδV LR

i (~θ) +

low profit,
j becomes last resort︷ ︸︸ ︷

(1− γ)δV D
i (~θ, j)

)
,

V D
i (~θ, `) =

i chosen when
` is last resort︷ ︸︸ ︷
θiσi(~θ, `)

(
(1− δ)ui + γδV D

i (~θ, `) +

low profit,
i becomes last resort︷ ︸︸ ︷
(1− γ)δV LR

i (~θ)
)

+
∑
j 6=i,`

θjσj(~θ, `)︸ ︷︷ ︸
j chosen when
` is last resort

(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)︸ ︷︷ ︸

low profit,
j becomes last resort

)
+ ρ`(~θ)︸ ︷︷ ︸

` is
chosen

δV D
i (~θ, `).

(4)

Of course, following the MLR strategy requires certain incentive conditions to be sat-

isfied. The incentive condition for a discerning agent i who turns out to be unqualified

not to propose in a period when ` is the agent of last resort, is given by:

last resort
agent chosen︷ ︸︸ ︷
ρ`(~θ)

1− θi
δV D

i (~θ, `) +
∑
j 6=i,`

discerning
j chosen︷ ︸︸ ︷
qj(~θ, i, `)

(
γδV D

i (~θ, `) +

low profit, j
becomes last resort︷ ︸︸ ︷

(1− γ)δV D
i (~θ, j)

)

≥

i chosen︷ ︸︸ ︷
σi(~θ, `)

(
(1− δ)ui + βδV D

i (~θ, `) +

low profit, i
becomes last resort︷ ︸︸ ︷

(1− β)δV LR
i (~θ)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)︸ ︷︷ ︸
discerning j

chosen instead

(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)︸ ︷︷ ︸

low profit, j
becomes last resort

)
.

(ICU)

Similarly, the incentive condition for a qualified discerning agent i to propose in a
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period when ` is the agent of last resort, is:

σi(~θ, `)
(

(1− δ)ui + γδV D
i (~θ, `) + (1− γ)δV LR

i (~θ)
)

+ (1− σi(~θ, `))
∑
j 6=i,`

pj(~θ, i, `)
(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)

)
≥ ρ`(~θ)

1− θi
δV D

i (~θ, `) +
∑
j 6=i,`

qj(~θ, i, `)
(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)

)
,

(ICQ)

which differs from Condition ICU both in the direction of the inequality and because

the probability that agent i generates low profit is γ instead of β.

Incentive conditions ICU and ICQ are linear in the equilibrium payoffs. As will be

seen below, ICU and ICQ depend on these payoffs only through the differences

∆Vi(~θ, `) = V D
i (~θ, `)− V LR

i (~θ)

in average discounted payoffs from being discerning instead of being the agent of

last resort, which vary with the identity of the agent of last resort when abilities are

heterogeneous. Furthermore, we will show that these payoff differences themselves

depend on the vector of abilities ~θ only through the likelihood premiums of being

picked by the principal when discerning versus when the agent of last resort. Formally,

agent i’s likelihood premium of being picked when discerning while ` is the agent of

last resort, versus when i himself is the agent of last resort, is:

π`i(~θ) = θiσi(~θ, `)− ρi(~θ)

For each i and each ~θ, let ~σi(~θ), ∆~Vi(~θ) and ~πi(~θ) be the (n − 1)-column vectors

whose `-component is σi(~θ, `), ∆Vi(~θ, `) and π`i(~θ), respectively, for each ` 6= i. These

vectors thus list the selection probabilities, average payoff differences and likelihood

premiums, respectively, that are relevant for i as a function of the agent of last resort.

The claims above are established as intermediate steps in characterizing when

the MLR strategy profiles constitutes a PPE. Stating the characterization requires

defining three matrices: MQ
i (~θ), which collects terms from ICQ; MU

i (~θ), which col-

lects terms from ICU ; and Bi(~θ), which collects terms from the recursive system (4).

Given its phrasing in terms of matrix inequalities, the characterization may not seem

insightful to the naked eye, but it is very useful in two respects. First, it provides

straightforward inequalities to numerically check whether MLR constitutes a PPE.
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Second, the characterization is a critical intermediate step to understanding when

MLR constitutes a belief-free equilibrium (as studied in the next subsection), for

which a far more transparent characterization emerges.

Proposition 4. Suppose θi > θ∗ for all i ∈ A. The MLR strategy profile constitutes

a PPE if and only if for all agents i:

MQ
i (~θ)Bi(~θ)

−1~πi(~θ) ≤ ~σi(~θ) ≤MU
i (~θ)Bi(~θ)

−1~πi(~θ), (5)

with the (n− 1)× (n− 1) matrices MQ
i (~θ), MU

i (~θ), Bi(~θ) are defined in (6-8) below.

The proof, in the Appendix, has three main steps. First, we manipulate incentive

conditions ICU and ICQ to show that they depend on average discounted continuation

payoffs only through the payoff differences ∆~Vi(~θ). In particular, we show that the

MLR strategy profile constitutes a PPE if and only if

δ(1− γ)MQ
i (~θ)∆~Vi(~θ) ≤ (1− δ)~σi(~θ) ≤ δ(1− γ)MU

i ∆~Vi(~θ),

where these matrices are defined by

[MQ
i (~θ)]``′ =

{
q`′(~θ, i, `)− p`′(~θ, i, `)(1− σi(~θ, `)) if ` 6= `′,

ρ`(~θ)/(1− θi) if ` = `′;
(6)

and

[MU
i (~θ)]``′ =

 [MQ
i (~θ)]``′ if ` 6= `′,[

MQ
i (~θ)

]
``′

+ γ−β
1−γ σi(

~θ, `) if ` = `′.
(7)

This provides only a partial characterization of equilibrium conditions, since the payoff

differences are not yet expressed in terms of exogenous parameters of the problem.

Second, we manipulate the recursive system (4) defining payoffs themselves, to show

that the differences in payoffs depend on the ability vector ~θ only through the likelihood

premiums (of which the matrix Bi(~θ) is a function). Namely, we show that:

Bi(~θ)∆~Vi(~θ) =
1− δ

δ(1− γ)
~πi(~θ),

where

[Bi(~θ)]``′ =

{
πi`′(~θ)− π``′(~θ) if ` 6= `′,

1 + πi`(~θ) + (1− δ)/(δ(1− γ)) if ` = `′.
(8)
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The third and final step is establishing that the matrix Bi(~θ) is invertible, which turns

out to be nontrivial. We prove when θi > θ∗ for all agents i that the matrix Bi(~θ)

has a special property ensuring invertibility: it is strictly diagonally dominant, which

means that for every row, the absolute value of the diagonal element is strictly larger

than the sum of the absolute values of the off-diagonal elements.

Generalizing one of our points from Section 2, note that the equilibrium conditions

are independent of the principal’s discount factor δ0, which means they hold even if

the principal were fully myopic. The equilibrium thus doesn’t require he principal’s

behavior to be enforced by the threat of punishments from agents, which we consider

a natural property in a mechanism design context where the principal is the authority.

3.2 The MLR as a belief-free equilibrium

The principal may have little information about agents’ abilities, and yet hope to

guarantee her first-best outcome. The MLR strategy profile is a belief-free equilibrium

if it forms a PPE for any realized vector of abilities ~θ in the set [θ, 1]A of possible

abilities. The necessary and sufficient condition for this depends on the minimal

probability premium π`i(~θ) for agent i when considering all possible ability levels and

last resort agents. As shown in the Appendix, the minimal probability premium is

the following function of θ, which is the lower envelope of its two components:

π =

 θ
n−1

if θ ≥ 1− n−2

√
1
n

1−n(1−θ)n−1

n−1
otherwise.

(9)

This characterization allows us to derive the agents’ minimal discount factor that

sustains the MLR as a belief-free equilibrium.

Proposition 5. The MLR forms a belief-free equilibrium if and only if for each agent,

δ ≥ 1

γ + (γ − β)π
,

where π is positive if and only if θ > θ∗.

Note that 1−n(1−θ)n−1

n−1
is the probability premium in the homogenous case where all

agents have an ability θ. Thus, by Proposition 5, the set of discount factors sustaining

the MLR as a belief-free equilibrium for ability profiles in [θ, 1]A is the same set that

sustains it as an equilibrium with homogenous abilities known to be θ when there
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are two agents or θ falls below 1 − n−2

√
1
n
. Otherwise, the range of discount factors

supporting the belief-free equilibrium is smaller than in the case where the agents

are commonly known to be θ.

Why is this so? In view of Proposition 5, we need to understand at which profile

of abilities the probability premium is minimized. Agent i’s probability premium

π`i(~θ) is increasing in both θi and θ`, so it is minimized by setting both equal to θ.

On the other hand, the abilities of discerning agents other than i have two opposing

effects on π`i(~θ). When these discerning agents have higher abilities, they reduce the

probability σi(~θ, `) that i is selected when he proposes (which lowers the premium),

but they also reduce the probability ρi(~θ) that i is picked when he is the agent of last

resort (which raises the premium). The effect associated to σi(~θ, `) becomes relatively

more important as θ grows because σi(~θ, `) is premultiplied by θi = θ in the definition

of the probability premium, while ρi(~θ) is independent of θi. Thus the ability vector

minimizing the probability premium has all agents with ability θ when it is relatively

low, but involves some high-ability opponents otherwise.

The main challenge in proving Proposition 5 stems from the fact that all possible

combinations of abilities must be considered, and that inverting Bi(~θ) is non-trivial

with heterogenous abilities. Fortunately, Lemma 4 shows the equilibrium conditions

depend directly on the vector Bi(~θ)
−1~πi(~θ). That vector can be shown to satisfy

Bi(~θ)
−1~πi(~θ) = [Id− 1− δiγ

δi(1− γ)
Bi(~θ)

−1]~1,

because the sum over any row ` of the matrix Bi(~θ) is equal to 1 + 1−δi
δi(1−γ)

+ π`i(~θ).

This reduces the problem at hand to understanding the vector Bi(~θ)
−1~1, that is, the

vector of row sums of Bi(~θ)
−1. Next, a power series development of Bi(~θ)

−1 establishes

that Bi(~θ)
−1~1 is decreasing in θi, or that Bi(~θ)

−1~πi(~θ) is increasing in θi. Since MU
i

is a positive matrix, the equilibrium constraint for discerning agents not to make

a proposal when he is unqualified is most challenging when θi = θ. After observing

that the matrix Bi(~θ) is an M-matrix12 in that case, we can apply the Ahlberg-Nilson-

Varah bound to provide a sharp upper-bound the row sums of Bi(~θ)
−1. Some algebra

then establishes that a discerning agent does not want to make a proposal when he

is unqualified when his discount factor is above the bound stated in Proposition 5.

12I.e., a strictly diagonally dominant matrix with positive diagonal entries and negative off-
diagonal entries.
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Similar techniques establish that discerning agents always want to submit proposals

when they are qualified, independently of their discount factors. As for necessity

in Proposition 5, we can just look at the equilibrium conditions stated in Lemma 4

for the ability vector that achieves π. Although abilities are heterogenous when θ is

higher than 1− n−2

√
1
n
, the matrix Bi(~θ) remains easy to invert in that case because

agents other than i are all symmetric.

Propositions 3 and 5 together imply the following result.

Corollary 1. Consider the ability threshold θ∗ defined in Proposition 3. We have:

(i) If θ < θ∗, then the principal’s first best cannot be achieved in any belief-free

equilibrium.

(ii) If θ > θ∗, then for all (β, γ) with 1−β
1−γ ≥

1+π
π

, the MLR strategy profile attains

the principal’s first best in a belief-free equilibrium.

The principal’s ability to achieve her first best in a belief-free manner thus hinges

on her worst possible agent, the organization’s ‘weakest link.’ Only when she is certain

that all agents have abilities greater than θ∗ can she incentivize them to be discerning.

A principal may or may not be able to screen agents to ensure this minimal standard.

The threshold θ∗ decreases in n, and is always smaller than 1/2, so it would suffice

that agents are simply more likely to be qualified than not.

3.3 Hierarchies

A natural question is whether a strategy profile other than MLR achieves the princi-

pal’s first best in PPE for a wider range of parameters. A complete characterization

of the necessary and sufficient conditions for attaining the first-best in PPE is a chal-

lenging task with three or more agents. It is not immediately clear how the proof

technique used for the n = 2 case extends to n ≥ 3. First, solving the minimiza-

tion problem to find the lowest discounted probability with which an agent is picked

in equilibrium is very challenging to solve. Second, and more importantly, it is not

clear that finding this minimum would allow to characterize the range of parameters

for which the principal’s first best is achievable. This is because we do not know the

shape of the convex set of equilibrium payoffs (which must be an interval for n = 2).13

13We are not aware of applications of APS to derive simple closed-form solutions in problems with
more than two players and no transfers.
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We thus propose to evaluate the performance of MLR against an intuitive class of

alternative strategy profiles. To simplify algebra, we focus on the case of homogenous

abilities (θ1 = ... = θn = θ). A strategy profile is hierarchical if following each history

h, the principal uses a ranking (i.e., strict ordering) Rh of all the agents such that:

(i) In the period following history h, the principal picks the proposing agent ranked

highest according to Rh

(ii) If high profit is generated in the period following h, or if the lowest-ranked agent

under Rh was picked, then the ranking in the next period remains Rh.

(iii) If low profit is generated, then a deterministic rule is applied to generate the

next period’s ranking, as a function of the current rank k of the failing agent.

Under this rule, agents ranked above agent k keep their positions;

(iv) The top (n−1)-ranked agents under Rh propose if and only if they are qualified

(i.e., are discerning), while the bottom-ranked agent always proposes himself.

The following are some examples of rules that determine how the agents’ rankings

change when a discerning agent generates low profit: (a) the “failing” agent drops to

the bottom of the ranking, and every agent ranked above i moves up one rank, (b) the

“failing” agent switches ranks with the bottom-ranked agent, and (c) the “failing”

agent switches ranks with the agent right below him. There are many possibilities,

but none clearly dominates MLR.

Proposition 6. For two strategy profiles s and s′ achieving the principal’s first-best,

say s dominates s′ if s forms a PPE for all values (β, γ, δ, θ) at which s′ does. Then:

(a) No hierarchical strategy profile dominates MLR.

(b) MLR does not dominate all hierarchical strategy profiles, but it does dominate

any such profile that sends a failing agent to the bottom of the ranking.

One rough intuition for why a hierarchy-based profile may not dominate MLR is

because the punishment MLR employs is “uniformly more severe,” in the sense that

there are only two tiers in the hierarchy, and a failing agent falls from the top of the

hierarchy to the bottom. In contrast, in a multi-tier hierarchy, the decrease in the

probability of being chosen for an agent in the second-to-last tier is not as severe.
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It remains an open question whether there exists some strategy profile, which is

not MLR and lies outside the class of hierarchical strategy profiles, that achieves the

principal’s first-best in PPE for the widest range of parameters. If no such profile

exists, then Proposition 6 suggests a more complex picture, where different strategy

profiles have to be used for different values of parameters to maximize the range of

parameters where first best is achievable in PPE. In the proof (in the Appendix), we

show that MLR works for some parameter values, while switching a failing agent with

the next in the hierarchy works for others.

4 Extensions

We now consider some extensions in the original context of a principal and two agents.

4.1 When agents also enjoy success

Agents may also care about their reputation or enjoy positive psychological reinforce-

ment from successfully carrying out a project. We extend the analysis to allow agents’

payoffs to depend on their performance as well as participation in the project. This

generalization allows for another possible interpretation, whereby an indivisible re-

source (e.g., server processing capacity, a common space, a piece of equipment, etc.)

is allocated in each period to one of two agents, each of whom knows their probability

distribution (using β or γ) of getting a high or low payoff from using it that period.

In this interpretation, the principal is a social planner who can, but need not, derive

personal payoff. Following a utilitarian objective, in each period she would allocate

the common good to the agent with highest expected payoff.

Formally, an agent receives an additional utility λ ≥ 0 for generating high profit

H, on top of the utility u ≥ 0 he enjoys, irrespective of the outcome, from being

selected to carry out the project. The case λ = 0, u = 1 corresponds to our original

model, whereas the other extreme u = 0 corresponds to an environment in which the

interests of the principal and the agents are most aligned (though not entirely: an

agent only cares about his own performance). The following extension of our earlier

results is proved in the Appendix.

Proposition 7. Suppose agents obtain additional utility λ for generating high profit

in addition to the utility u for being picked.
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(a) A PPE that attains the principal’s first-best exists if and only if

δ ≥ 1

β + (θ1 + θ2) (γ − β) + θ1θ2

(
λ(γ−β)(1−β)

1+λβ

) . (10)

(b) The MLR strategy profile is a PPE if and only if (10) is satisfied; that is, there

exists a strategy profile attaining first-best if and only if the MLR attains it.

Thus, the MLR strategy profile still attains the first-best whenever doing so is

possible, independently of the agents’ payoff structure (u, λ). Notice that agents

benefitting more from high outcomes introduces an additional positive component

θ1θ2

(
λ(γ−β)(1−β)

1+λβ

)
into the denominator of (10), extending the region for which first-

best is attainable. Intuitively, the bonus utility helps to align incentives. This has two

implications. First, MLR is a belief-free equilibrium for a larger range of abilities [θ, 1]2

than before.14 Second, the first-best region depends on the composition of abilities,

not their sum. When λ = 0, differences in agents’ abilities had no implications for

the possibility of attaining first-best. Such differences, however, play an important

role when agents directly care about their performance. Holding fixed the sum of the

agents’ abilities, the first-best region is maximized when agents are identical, whereas

heterogeneity reduces the positive effect from the alignment of incentives.

4.2 Principal-renegotiation-proofness

In standard problems of mechanism design, the notion of partial implementation

only requires the mechanism to have some equilibrium that achieves the principal’s

desired outcome. In this view, the principal has the ability to make her desired

equilibrium focal. How does one extend this idea to dynamic mechanism design

without commitment? As a starting point, consider the refinement of renegotiation

proofness (Farrell and Maskin, 1989). Loosely speaking, an equilibrium strategy

profile for a repeated game is weakly renegotiation-proof if at every history, there is

no other continuation equilibrium under that strategy profile which all players would

unanimously agree to switch to. The ability to always switch to a more-preferred

equilibrium has a similar flavor to the principal’s ability in mechanism design, but

14The analog of Proposition 3 adds the term θ2
(
λ(γ−β)(1−β)

1+λβ

)
in the threshold δ’s denominator.
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gives equal power to all players. That is, standard renegotiation-proofness treats the

principal just like any other agent.

We propose instead a notion of principal-renegotiation-proofness that applies to

dynamic-mechanism design without commitment. A PPE satisfies this refinement

if at every history, there is no other continuation equilibrium under that PPE that

achieves a higher expected payoff for the principal. Our notion is precisely that of

renegotiation-proofness with power given to a single agent instead of the group as a

whole (unanimity). More generally, one can define S-renegotiation-proof equilibrium,

where S represents a coalition that has the power to select equilibria (conventions,

norms) within a game. The principal may not be able to commit in our dynamic

mechanism design problem, and thus faces incentive constraints of her own; but she

does not lose the power to select the equilibrium being played in her organization at

any point. Hence the natural choice in our framework is S = {principal}.
Under this refinement, we identify a stark characterization of the payoffs that can

be sustained, which also address cases in which the principal’s first-best cannot be

achieved in a PPE.

Proposition 8. Consider a principal-renegotiation-proof PPE in which agents use

pure strategies.15 The principal’s first-best is achieved (e.g, using the MLR strategy) if

(1) holds, and otherwise the one-shot Nash equilibrium is played in every stage game.

4.3 Losses

A key feature of our model is that the principal weakly prefers to choose a non-

qualified agent to carry out a project, than to choose no agent at all. Suppose instead

that a non-qualified agent who is hired for the task generates losses in expectation:

βH + (1− β)L < 0, which requires L < 0 and for β,H to be relatively small. In this

case, the principal attains his first-best payoff if in every period he chooses a qualified

agent whenever one is available, and chooses no one otherwise. Can this first-best

payoff be attained in a PPE? We address this question in the case of equally able

agents and focus on pure-strategy PPEs.

Proposition 9. Assume θ1 = θ2 = θ and βH + (1 − β)L < 0. There is no pure-

strategy PPE in which every period, every agent proposes if and only if he is qualified.

15The principal is allowed to randomize in the event both agents make proposals.
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Thus it is impossible for the principal to never pick the wrong agent, while simul-

taneously ensuring that the right agent always makes himself available. The proof

proceeds along the same lines as our proof of the necessary condition for attaining

the principal’s first-best payoff in a PPE in our original model.

4.4 General profit distributions

Our model assumes there are only two profit levels, H and L. Suppose instead that

profit follows a more general distribution, conditional on an agent’s qualification.

Formally, suppose the principal’s profit y in any period is drawn from [y, ȳ] according

to the CDF Q (U) when the agent is qualified (unqualified). We allow for y < 0;

we only require that the expected profit from an unqualified agent is positive, and

strictly lower than the expected profit from a qualified agent. This setting includes

environments where qualified agents first-order stochastically dominate unqualified

ones, or where qualified agents have higher variance.

For which profit levels should an agent be punished in this case? Notice that the

MLR strategy profile can be adapted by endogenizing β and γ. A discerning agent still

proposes only when he is qualified, and the agent of last resort still proposes regardless

of qualification. The principal selects an agent as before. The only difference is that

a discerning agent becomes the new agent of last resort when generating a profit in

some punishment set Y ⊂ [y, ȳ] which has positive measure according to U . Then

γ∗ = 1−
∫
y∈Y dQ(y) is the probability a qualified agent generates a payoff outside the

punishment set, and β∗ = 1−
∫
y∈Y dU(y) is the probability that an unqualified agent

does so. If this adjusted-MLR strategy profile is an equilibrium, then the principal

obtains her first best. In the Appendix, we examine how the punishment set Y

should be chosen to sustain the equilibrium, when possible. In particular, we may

want to select the punishment set so that first-best is achievable for the largest range

of discount factors. We show, for instance, that under the monotone likelihood ratio

property, the punishment set comprises all profit levels below some threshold y∗.16

Analogous reasoning accommodates settings where outcomes are judged through

lenses other than profit (an invention, a work of art, a research article) and may

depend on the principal’s perception. The principal may have gradations in her

16We are thus able to extend our necessary and sufficient conditions for MLR to be an equilibrium
to the case of a continuum of profits. However, it remains an open question whether in this case,
MLR attains the first-best in equilibrium for the widest range of parameters.
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assessments of outcomes, but it only matters how she pools those into ‘high’ and

‘low’ categories to determine when to punish discerning agents. Her perception of

outcomes need only be sufficiently astute to sustain equilibrium. In such settings,

the distribution of the principal’s possible assessments, conditional on an agent’s

qualification, must be common knowledge. The principal’s assessment itself, however,

need not be observed by agents. It suffices to allow her to publicly announce the next

agent of last resort, as she has an incentive to speak truthfully.

5 Concluding Remarks

The literature on dynamic mechanism design has accumulated a rich set of results on

what is the best outcome a principal can achieve in a variety of contexts, and what

incentive schemes she should use for that purpose. That literature, however, requires

the principal to credibly commit to her incentive schemes, and typically uses monetary

transfers as a means for providing incentives. The repeated games literature, on the

other hand, treats the principal as just another player (meaning it assumes away

commitment), and has developed tools for characterizing the set of payoffs that can

be sustained in equilibrium. However, most of the sharp results in that literature

consider the limit case when the players are infinitely patient, or when transfers are

allowed. There are no ‘off-the-shelf’ results that are applicable to an arbitrary game

to obtain the best equilibrium payoffs a player can obtain for any combination of the

game’s parameters. Results tend to rely on complex strategy profiles, calibrated to

the game’s parameters, as a means for delineating the equilibrium payoff set.

This paper studies a simple, repeated interaction between a principal and a group

of agents, which naturally arises in many contexts: deciding which worker is best for

a new project, which team member’s idea has the most potential, which candidate

to hire. Many of these examples can be seen as a ‘pure persuasion’ problem: the

candidates or applicants simply want to be selected, while the decision-maker wants

to select an individual satisfying some requirements (e.g., if he’s qualified for the task).

Oftentimes, the decision-maker in these scenarios cannot make contingent transfers,

and has no credible means of committing to a decision rule.

Intuition suggests that the principal should contemplate selecting someone else

after an agent generates a disappointing outcome, if she hopes to incentivize at least

some of the agents to be discerning. It is not obvious however, whether the principal
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should act after a single failure, whether her decision rule should depend on the

number of past successes or failures, or whether the best outcome is attained by a rule

which is sensitive to the parameters of the environment. It is therefore interesting to

learn that whenever the principal’s first-best outcome is achievable in equilibrium, it

is achievable by a simple Markov strategy, which is independent of the environment’s

parameters. Furthermore, if we view the principal as a figure of authority who can

steer the agents away from equilibria that are inferior (in her eyes), then either the

repeated interaction leads to the best outcome for the principal, or it doesn’t help the

principal at all (she gets the same payoff as if the game was static), and regardless of

parameter values, the players follow simple Markov strategies. Given rising interest

in dynamic mechanism design, mechanism design without transfers, and mechanism

design without commitment, we hope our notion of principal-renegotiation-proofness

will prove useful in analyzing the intersection of these three areas.

Appendix

A1 Characterization of first-best with two agents

Proposition 1 corrresponds to λ = 0 in Proposition 7, so we prove the latter here.

Proof of Proposition 7. Suppose a first-best PPE exists, and denote the set of

first-best equilibrium payoffs by EFB ⊂ R3. Given the reward scheme (u, λ), the sum

of the two agents’ (average) continuation payoffs must equal

σ∗ = u+ λ [(1− θ1)(1− θ2)β + (1− (1− θ1)(1− θ2)) γ] (11)

at any history. Furthermore, in each stage game it must be that one of the agents,

say agent i, is discerning (D) and proposes if and only if he is qualified; the other,

last-resort, agent (LR), −i, proposes regardless of his qualification, and the principal

selects i if he proposes and −i otherwise. Following APS, each pair of first-best equi-

librium payoffs for the players can be supported by such a stage-game action profile

and a rule specifying promised (average) continuation payoff vectors, one for each out-

come of the stage-game, each of which belongs to EFB. For convenience, we assume

that after each period, firms can observe the realization of a public randomization

device, and select continuation equilibria based on these realizations. This guarantees

the convexity of the equilibrium payoff set, but is not needed for our results.

29



Denote by [σi, σi] the set of average payoffs attainable in a first-best equilbrium

for agent i.17 The payoff sets may differ, since the agents may have different abilities.

Let pi = γθi + β(1 − θi) be agent i’s ex-ante probability of carrying out a project

successfully, and let σi(jS) (respectively, σi(jF )) denote i’s continuation payoff when

j is picked and succeeds (respectively, fails). We proceed in several steps to derive

necessary conditions on the parameters for existence of a first-best equilibrium.

Step 1. Solving for σ1.Given the observations above, σ1 must be the minimal payoff

of agent 1 that can be supported when promised continuation payoffs are restricted to

EFB. Suppose σ1 is obtained when agent 1 is LR (we confirm this later). We assume

σ1 actually solves the following weaker minimization problem, where some of the

incentive constraints of the agents are ignored. Specifically, we assume σ1 minimizes

(1− θ2) [(1− δ)(u+ p1λ) + p1δσ1(1S) + (1− p1)δσ1(1F )] (12)

+ θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

subject to the IC constraint that agent 2 does not propose when unqualified,

δ [p1σ2(1S) + (1− p1)σ2(1F )] ≥ (1− δ)u+ β ((1− δ)λ+ δσ2(2S)) + (1− β)δσ2(2F ),

as well as the feasibility constraints, i.e., the constraints on the continuation values,

σi ∈ [σi, σi], i = 1, 2. Adding the remaining IC constraints could make the minimum

greater, for more stringent necessary conditions. However, this will be redundant

since the necessary condition found will be sufficient.18 Using the fact that agents’

continuations sum to σ∗ for any realization, we can rewrite agent 2’s IC constraint:

δ (βσ1(2S) + (1− β)σ1(2F )) ≥ (1− δ) (u+ βλ) + δ [p1σ1(1S) + (1− p1)σ1(1F )] .

Clearly, (12) is minimized only if σ1(1S) = σ1(1F ) = σ1 (lowering these continuations

decreases the objective and can only relax the constraint). Therefore, σ1 minimizes

(1− θ2) [(1− δ) (u+ p1λ) + δσ1] + θ2δ [γσ1(2S) + (1− γ)σ1(2F )] (13)

subject to the binding IC constraint δ (βσ1(2S) + (1− β)σ1(2F )) = (1−δ) (u+ βλ)+

δσ1 and the feaasibility constraints. Using the IC constraint, we see the coefficient

17Compactness of the PPE payoff set follows from standard arguments.
18Alternatively, once obtained, it can be verified that the solution to the relaxed minimization

problem also solves the original one.

30



on σ1(2S) is (γ − β)/(1 − β) > 0, and hence (13) is increasing in σ1(2S). Since a

decrease in σ1(2S) yields an increase in σ1(2F ), there are two cases to consider.

Case 1: σ1(2S) = σ1 does not violate the feasibility constraints. Then σ1(2F ) =

σ1 + (1−δ)(u+βλ)
δ(1−β)

and feasibility requires σ1(2F ) ≤ σ1. Setting σ1 equal to the objective

in the minimization problem, we obtain σ1 = (1− θ2) (u+ p1λ) + θ2
1−γ
1−β (u+ βλ) . To

check whether the feasibility constraint σ1 + (1−δ)(u+βλ)
δ(1−β)

≤ σ1 is satisfied, we will

consider later below the problem of maximizing 1’s continuation payoff.

Case 2: σ1(2F ) = σ1. If σ1(2S) cannot be brought down further, then σ1(2F )

must be at its maximum value, σ1. Then σ1(2S) = (1−δ)(u+βλ)
δβ

+
σ1

β
− (1−β)σ1

β
and,

setting σ1 equal to the objective in the minimization problem,

σ1 =
(1− δ)

[
(1− θ2) (u+ p1λ) + θ2

γ(u+βλ)
β

]
− δθ2σ1

[
γ−β
β

]
1− δ

[
(1− θ2) + θ2

γ
β

] . (14)

Feasibility requires that 1−δ
δβ

+
σ1

β
− (1−β)σ1

β
∈ [σ1, σ1].

Step 2. Solving for σ1. Suppose that agent 1’s first-best equilbrium payoff is

maximized when 1 is discerning (this will later be confirmed). Analogously to step 1,

we now solve for σ1 as a solution to the problem of maximizing 1’s payoff

θ1 [(1− δ)(u+ γλ) + γδσ1(1S) + (1− γ)δσ1(1F )]

+ (1− θ1)δ [p2σ1(2S) + (1− p2)σ1(2F )]

subject to the IC constraint that agent 1 does not propose when he is unqualified,

δ [p2σ1(2S) + (1− p2)σ1(2F )] ≥ (1−δ)u+(β ((1− δ)λ+ δσ1(1S)) + (1− β)δσ1(1F )) ,

and feasibility constraints. As in step 1, ignoring remaining constraints is wlog.

Setting σ1(2S), σ1(2F ) to σ1 (increases objective, relaxes IC), the objective becomes

θ1 [(1− δ)u+ (γ ((1− δ)λ+ δσ1(1S)) + (1− γ)δσ1(1F ))] + (1− θ1)δσ1

and the IC constraint, which must bind, becomes

δσ1 = (1− δ) (u+ βλ) + δ (βσ1(1S) + (1− β)σ1(1F )) .

Solving this problem involves increasing σ1(1S) as much as possible (intuitively, in-
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creasing agent 1’s payoff when he is discerning and succeeds). There are 2 cases:

Case 3: σ1(1S) = σ1 does not violate the feasibility constraints. Then σ1(1F ) =

σ1− (1−δ)(u+βλ)
δ(1−β)

and feasibility requires σ1(1F ) ≥ σ1. Setting σ1 equal to the objective

in the maximization problem, we obtain σ1 = θ1(λ+ u)
[
γ−β
1−β

]
.

Case 4: σ1(1F ) = σ1. Plugging σ1(1S) = σ1

β
− (1−β)σ1

β
− (1−δ)(u+βλ)

δβ
∈ [σ1, σ1] in

the objective,

σ1 = θ1

[
γ

β
− 1

] (1− δ)u+ δσ1

δθ1

[
γ
β
− 1
]
− (1− δ)

 . (15)

In particular, note that it must be the case that δθ1

[
γ
β
− 1
]
− (1− δ) > 0.

Step 3. Combining σ1 and σ1. We now combine the possible cases.

Cases 1 and 3. Combining σ1 = (1 − θ2) (u+ p1λ) + θ2
1−γ
1−β (u+ βλ) and σ1 =

θ1(λ + u)
[
γ−β
1−β

]
, together with the necessary conditions for these cases (which boil

down to σ1 − σ1 ≥
(1−δ)(u+βλ)

δ(1−β)
), the following condition must hold:

θ1(λ+ u)

[
γ − β
1− β

]
−
(

(1− θ2) (u+ p1λ) + θ2

[
1− γ
1− β

]
(u+ βλ)

)
≥ (1− δ) (u+ βλ)

δ(1− β)
.

This condition simplifies to condition (10) in the statement of Proposition 7.

Cases 2 and 4. Combining (14) and (15), it can be shown that

σ1 − σ1 = (1− δ) (u+ λβ)
1 + (θ1 + θ2)

[
γ
β
− 1
]
− θ1θ2

[
γ
β
− 1
]

λβ
u+λβ

δ(θ1 + θ2)
[
γ
β
− 1
]
− (1− δ)

.

Furthermore, the feasibility conditions for the two cases reduce to

σ1 − σ1 ∈
[

1− δ
δ

(u+ βλ) ,
1− δ

δ(1− β)
(u+ βλ)

]
.

The requirement that σ1 − σ1 ≤ 1−δ
δ(1−β)

(u+ βλ) is equivalent to the inequality,

δ(1− β) + δ(1− β) (θ1 + θ2)
[
γ
β
− 1
]
− δ(1− β)θ1θ2

[
γ
β
− 1
]

λβ
u+λβ

δ(θ1 + θ2)
[
γ
β
− 1
]
− (1− δ)

≤ 1.
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By the observation in case 4 that δθ1

[
γ
β
− 1
]
− (1 − δ) > 0, the denominator is

positive. The inequality can therefore be rewritten to again obtain (10). Finally,

note that the conditions for cases 1 and 4 can be satisfied jointly only for a parameter

set of measure zero, since case 1 requires σ1−σ1 ≥
(1−δ)(u+βλ)

δ(1−β)
, whereas case 4 requires

σ1 − σ1 ≤
(1−δ)(u+βλ)

δ(1−β)
. The same holds for the combination of cases 2 and 3.

We next verify our conjecture that agent 1’s minimal (respectively, maximal) first-

best equilibrium payoff is obtained when he is LR (respectively, discerning).

Step 4. Verifying the postulated roles.

Claim 1. σ1 is attained when agent 1 is LR.

Proof. If σ1 were met when agent 1 is discerning, his payoff would be

θ1 ((1− δ) (u+ γλ) + γδσ1(1S) + (1− γ)δσ1(1F ))

+ (1− θ1)δ (p2σ1(2S) + (1− p2)σ1(2F )) .

The IC constraint for agent 1 not proposing when he is unqualified is

δ (p2σ1(2S) + (1− p2)σ1(2F )) ≥ (1− δ) (u+ λβ) + δ (βσ1(1S) + (1− β)σ1(1F )) .

Therefore,

σ1 ≥ θ1 ((1− δ) (u+ γλ) + δ (γσ1(1S) + (1− γ)σ1(1F )))

+ (1− θ1)δ (p2σ1(2S) + (1− p2)σ1(2F ))

≥ θ1 ((1− δ) (u+ γλ) + γδσ1(1S) + (1− γ)δσ1(1F ))

+ (1− θ1) ((1− δ) (u+ λβ) + δ(βσ1(1S) + (1− β)σ1(1F )))

≥ (1− δ) (u+ λp1) + δσ1,

which implies that σ1 ≥ (1− δ)(u+ λp1) + δσ1, or that σ1 ≥ u+ λp1. But u+ λp1 is

agent 1’s average payoff when he is selected in all periods, a contradiction. �

Claim 2. σ1 is attained when agent 1 is discerning.

Proof. By contradiction. If σ1 is attained when agent 1 is LR, his average payoff is

(1− θ2) ((1− δ) (u+ p1λ) + δ (p1σ1(1S) + (1− p1)σ1(1F )))

+ θ2δ (γσ1(2S) + (1− γ)σ1(2F )) .
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The IC constraint of the discerning agent 2 for not proposing when unqualified is:

(1− δ) (u+ βλ) + δ (βσ2(2S) + (1− β)σ2(2F )) ≤ δ (p1σ2(1S) + (1− p1)σ2(1F )) .

Recalling that each outcome x ∈ {1S, 1F, 2S, 2F}, σ1(x) + σ2(x) = σ∗, we have:

(1− δ) (u+ βλ) + δ (p1σ1(1S) + (1− p1)σ1(1F )) ≤ δ (βσ1(2S) + (1− β)σ1(2F )) .

Therefore

σ2 ≤ (1− θ2) ((1− δ) (u+ p1λ) + δ (p1σ1(1S) + (1− p1)σ1(1F )))

+ θ2δ (γσ1(2S) + (1− γ)σ1(2F ))

≤ (1− θ2)δ (βσ1(2S) + (1− β)σ1(2F )) + θ2δ (γσ1(2S) + (1− γ)σ1(2F ))

+ (1− θ2)(1− δ) ((u+ p1λ)− (u+ βλ))

≤ δσ1 + (1− θ2)(1− δ)λ (p1 − β) ,

which means σ1 ≤ (1 − θ2)λ (p1 − β) < (1 − θ2) (u+ λp1) . But (1 − θ2)(u + λp1) is

1’s average payoff when he is last resort in all periods, a contradiction. �

We conclude that we have in (10) a necessary condition for the existence of a

first-best PPE. In fact, since (10) is also sufficient for cases 1 and 3 to hold jointly,

this immediately implies (10) is also sufficient for the existence of a first-best PPE.19

We next show directly that the MLR forms a (first-best) PPE whenever (10) holds.

Step 5: Sufficient conditions for MLR. Let V D
1 and V LR

1 represent agent 1’s

average discounted payoff (prior to learning his qualification status) under the MLR

strategy profile when he is discerning and when he is last-resort, respectively. Then

the IC constraint for an unqualified discerning agent not to propose is given by:

δV D
1 ≥ (1− δ) (u+ βλ) + βδV D

1 + (1− β)δV LR
1 .

Subtracting δV LR
1 from both sides of the inequality yields:

V D
1 − V LR

1 ≥ (1− δ) (u+ βλ)

δ(1− β)
. (16)

19More precisely, following APS, (10) guarantees that a non-empty, bounded, self-generating set
of first-best payoffs (payoff vectors in which the principal obtains her first best) exists.
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To express the LHS in terms of the parameters we solve for V D
1 and V LR

1 :

V D
1 = θ1[(1− δ) (u+ λγ) + γδV D

1 + (1− γ)δV LR
1 ] + (1− θ1)δV D

1 ,

V LR
1 = (1− θ2)[(1− δ) (u+ λp1) + δV LR

1 ] + θ2[γδV LR
1 + (1− γ)δV D

1 ].

Rearranging, we have

V D
1 =

θ1(1− δ) (u+ λγ) + θ1(1− γ)δV LR
1

(1− δ) + θ1(1− γ)δ
, (17)

V LR
1 =

(1− θ2)(1− δ) (u+ λp1) + θ2(1− γ)δV D
1

(1− δ) + δθ2(1− γ)
.

Solving explicitly for V LR
1 , we find it equals:

(1− θ2)(1− δ) (u+ λp1) + θ1(1− θ2)(1− γ)δ (u+ λp1) + θ1θ2δ(1− γ) (u+ λγ)

(1− δ) + δ(1− γ)(θ1 + θ2)
,

and from (17) it follows that

V D
1 − V LR

1 =
θ1(1− δ) (u+ λγ)− (1− δ)V LR

1

(1− δ) + θ1(1− γ)δ
.

Plugging in the expression for V LR
1 yields:

V D
1 − V LR

1 = (1− δ)(u+ λβ) (θ1 + θ2 − 1) + θ1θ2λ(γ − β)

(1− δ) + δ(1− γ)(θ1 + θ2)
,

which combined with the IC constraint (16) yields the condition (10). �

A2 Proofs for the many agents case

Proof of Proposition 3. Suppose some PPE achieves the principal’s first best.

Thus at each history h, there is i(h) ∈ A such that agents other than i(h) propose

themselves iff they are qualified, i(h) always proposes himself, the principal picks i(h)

only when he is the sole proposer, and otherwise picks an agent other than i(h).

An agent j could follow the strategy of proposing himself in each round, what-

ever its quality. By doing this, the agent gets picked with probability at least

(1 − maxi∈A θi)
n−1 at any history h with j = i(h), and he gets picked with prob-

ability at least (1 − maxi∈A θi)
n−2 at any history h with j 6= i(h). Each agent can

thus secure himself a discounted likelihood of being picked which is larger than or
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equal to (1−maxi∈A θi)
n−1/(1− δ).

To achieve her first best in equilibrium, the principal picks exactly one agent

in each round. So, in total, the aggregate discounted likelihood of being picked is

1/(1− δ). The equilibrium could not exist if 1/(1− δ) were strictly smaller than the

aggregate discounted likelihood of being picked that agents can minimally guarantee,

that is, n(1−maxi∈A θi)
n−1/(1− δ). That relationship holds iff maxi∈A θi < θ∗. �

Remark 1. Observe that
∑

j 6=` θjσj(
~θ, `) + ρ`(~θ) = 1, since the principal always

selects some agent, resorting to the last resort agent if no discerning agent proposes.

Moreover, note that
∑

j 6=i,` pj(
~θ, i, `) = 1, since the fact that player i has proposed

means that the selected agent will come from the discerning pool. On the other hand,∑
j 6=i,` qj(

~θ, i, `) + ρ`(~θ)
1−θi = 1, since it is possible that no discerning agent will propose.

Proof of Proposition 4 The proof follows from Lemmas 1 and 2, combined with

the invertibility of Bi(~θ) proved in Lemma 4(d) further below.

Lemma 1. The MLR strategy profile constitutes a PPE if and only if

δ(1− γ)

(1− δ)
MQ

i (~θ)∆~Vi(~θ) ≤ ~σi(~θ) ≤
δ(1− γ)

(1− δ)
MU

i ∆~Vi(~θ).

Proof. First note that the MLR strategy of the principal is first best for him, regard-

less of his discount factor and agents’ types, so long as agents follow their strategies.

Moreover, given that the principal follows this strategy, a last resort agent cannot

change his probability of going back into the discerning pool of agents by his own

actions. The last resort agent thus finds it optimal to propose himself with probabil-

ity one, regardless of his discount factor and agents’ types. It remains to check the

incentive conditions for discerning agents.

Subtracting δV LR
i (~θ) from both sides of the condition (ICU) for i to refrain from

proposing when unqualified and when ` is the last resort agent, we find that

ρ`(~θ)

1− θi
δ∆V D

i (~θ, `) +
∑
j 6=i,`

qj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
≥ σi(~θ, `)

(
1− δ + βδi∆V

D
i (~θ, `)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
.
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Collect all ∆V D
i terms on the left-hand side, and multiply the inequality through by

1
1−δ . Then, for each j 6= `, the coefficient multiplying (1−γ)δ

1−δ ∆V D
i (~θ, j) is easily seen

to be [MU
i (~θ)]`j. Using Remark 1, the coefficient multiplying (1−γ)δ

1−δ ∆V D
i (~θ, `) is

1

1− γ

(
ρ`(~θ)

1− θi
+ γ

∑
j 6=i,`

qj(~θ, i, `)− βσi(~θ, `)− γ(1− σi(~θ, `))
∑
j 6=i,`

pj(~θ, i, `)

)

=
1

1− γ

(
ρ`(~θ)

1− θi
+ γ(1− ρ`(~θ)

1− θi
)− βσi(~θ, `)− γ(1− σi(~θ, `))

)
= [MU

i (~θ)]``.

Stacking the inequalities for ` 6= i yields the matrix inequality with MU
i (~θ).

Next, subtracting δV LR
i (~θ) from both sides of the condition (ICQ) for agent i to

propose himself when qualified and when ` is the last resort agent, we find that

σi(~θ, `)
(

1− δ + γδ∆V D
i (~θ, `)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
≥
∑
j 6=i,`

qj(~θ, i, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
+
ρ`(~θ)

1− θi
δ∆V D

i (~θ, `).

Collect all ∆V D
i -terms on the right-hand side, and multiply the inequality through by

1
1−δ . Then the coefficient multiplying (1−γ)δ

1−δ ∆V D
i (~θ, j) is easily seen to be [MQ

i (~θ)]`j.

Given Remark 1, the coefficient multiplying (1−γ)δ
1−δ ∆V D

i (~θ, `) reduces to

1

1− γ

(
γ
∑
j 6=i,`

qj(~θ, i, `) +
ρ`(~θ)

1− θi
− γ

)
= [MQ

i (~θ)]``.

Stacking the inequalities for ` 6= i yields the matrix inequality with MQ
i (~θ).

Lemma 2. For all i and ~θ, the average discounted payoff differences ∆~Vi(~θ) satisfy:

Bi(~θ)∆~Vi(~θ) =
ui(1− δi)
δi(1− γ)

~πi(~θ),

where Bi(~θ) is the (n− 1)-square matrix whose ``′-entry, for any `, `′ in A \ {i}, is:

[Bi(~θ)]``′ =

{
πi`′(~θ)− π``′(~θ) if ` 6= `′,

1 + πi`(~θ) + (1− δi)/(δi(1− γ)) if ` = `′.
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Proof. The value function V D
i is defined by the equation

V D
i (~θ, `) = θiσi(~θ, `)

(
1− δ + γδV D

i (~θ, `) + (1− γ)δV LR
i (~θ)

)
+
∑
j 6=i,`

θjσj(~θ, `)
(
γδV D

i (~θ, `) + (1− γ)δV D
i (~θ, j)

)
+ ρ`(~θ)δV

D
i (~θ, `),

(18)

while the value function V LR
i is defined by

V LR
i (~θ) = ρi(~θ)

(
1− δ + δV LR

i (~θ)
)

+
∑
j 6=i

θjσj(~θ, i)
(
γδV LR

i (~θ) + (1− γ)δV D
i (~θ, j)

)
.

(19)

Subtracting δV LR
i (~θ) from both sides of Equation (18), we find that

V D
i (~θ, `)− δV LR

i (~θ) = θiσi(~θ, `)
(

1− δ + γδ∆V D
i (~θ, `)

)
+
∑
j 6=i,`

θjσj(~θ, `)
(
γδ∆V D

i (~θ, `) + (1− γ)δ∆V D
i (~θ, j)

)
+ ρ`(~θ)δ∆V

D
i (~θ, `),

(20)

In view of Remark 1, Equation (18) simplifies to

V D
i (~θ, `)− δV LR

i (~θ) = θiσi(~θ, `)(1− δ) + (1− γ)δ
∑
j 6=i,`

θjσj(~θ, `)∆V
D
i (~θ, j)

+ δ∆V D
i (~θ, `)

(
γ + (1− γ)ρ`(~θ)

)
.

(21)

Similarly, subtracting δV LR
i (~θ) from both sides of Equation (19), we find that

V LR
i (~θ)− δV LR

i (~θ) = ρi(~θ)(1− δ) + (1− γ)δ
∑
j 6=i

θjσj(~θ, i)∆V
D
i (~θ, j). (22)

Subtracting Equation (22) from Equation (21), and using the definition of π``′(~θ),

∆V D
i (~θ, `) = π`i(~θ)(1− δ) + δ∆V D

i (~θ, `)
(
γ − (1− γ)πi`(~θ)

)
+ (1− γ)δ

∑
j 6=i,`

(
θjσj(~θ, `)− θjσj(~θ, i)

)
∆V D

i (~θ, j).
(23)

Note that θjσj(~θ, `)−θjσj(~θ, i) = π`j(~θ)−πij(~θ). We can thus rearrange Equation (23)

and divide through by (1−γ)δ to find that Bi(~θ)∆~Vi(~θ) = 1−δ
(1−γ)δ

~πi(~θ), as claimed.
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Proof of Proposition 5. The result follows from Lemmas 3-7. We let σ∗ =

σi(θ
∗, . . . , θ∗, `) for any i 6= ` (the selection probability does not vary on i and ` when

agents are identical).

Lemma 3. (a) For each agent ` 6= `′,
ρ`′ (

~θ)

σ`′ (
~θ,`)

is decreasing in θk, for all k ∈ A.

(b) π``′(~θ) > 0 for all ~θ ∈ [θ, 1]n and any ` 6= `′ in A, if and only if θ > θ∗.

(c) (1− θ∗)σ∗ ≤ 1/2.

(d) Suppose θ > θ∗, and ` 6= i is such that θ` ≤ θi. Then π`i(~θ)− πi`(~θ) ≤ 1/2.

(e) The minimal probability premium π := min`∈A\{i}min~θ∈[θ,1]n π`i(
~θ) is given by

π =

 θ
n−1

if n ≥ 3 and θ ≥ 1− n−2

√
1
n

1−n(1−θ)n−1

n−1
otherwise.

Proof. (a) This is true since the following function is decreasing in θk, for all k ∈ A:

ρ`′(~θ)

σ`′(~θ, `)
=

∏
j 6=`′ (1−θj)∑n−2

k=0
1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S θj

∏
j∈A\S,j 6=`,`′ 1−θj

= 1−θ`∑n−2
k=0

1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S

θj
1−θj

∏
j∈A\S,j 6=`,`′

1−θj
1−θj

= 1−θ`∑n−2
k=0

1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S

θj
1−θj

.

(b) Notice that π``′(~θ) > 0 iff θ`′ >
ρ`′ (

~θ)

σ`′ (
~θ,`)
. From (a), the RHS takes its highest value

at ~θ = (θ, . . . , θ). Using this, notice π``′(~θ) > 0 for all ~θ ∈ [θ, 1]n and any two distinct

`, `′ in A, if and only if θ > θ(n− 1) (1−θ)n−1

1−(1−θ)n−1 , or equivalently, θ > θ∗ = n−1

√
1
n
.

(c) First note that the definition of σ∗ is independent of the choice of i, ` since σ is

evaluated when all abilities are equal to θ∗. Then observe (1 − θ∗)σ∗ ≤ 1/2 if and

only if 2
n
n−1

√
1
n
≤ 1 − n−1

√
1
n
, since, by construction, θ∗σ∗ = ρ∗ := ρi(θ

∗, . . . , θ∗) and

θ∗ = 1 − n−1

√
1
n
. The desired inequality is thus equivalent to 1 ≤ nn

(n+2)n−1 Taking ln

of both sides, and adding/subtracting ln(n+ 2), 1 ≤ nn

(n+2)n−1 is equivalent to

n (lnn− ln(n+ 2)) + ln(n+ 2) ≥ 0. (24)

The inequality 1 ≤ nn

(n+2)n−1 , and thus (24), is satisfied for n ∈ {2, 3, 4} (i.e., 1 ≥ 1,

27/25 ≥ 1 and 256/216 ≥ 1, resp.). We now show it holds for all larger n by proving
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the derivative of the LHS of (24) is positive for n ≥ 4. Indeed, that derivative is

3

n+ 2
+ lnn− ln(n+ 2) >

3

n+ 2
− 2

n
=

n− 4

n(n+ 2)
,

where the inequality follows by strict concavity of lnn, so ln(n+2)−lnn
2

< d
dn

lnn = 1
n
.

(d) Note that θi ≥ θ` implies that

π`i(~θ)− πi`(~θ) = θiσi(~θ, `)− ρi(~θ)− θ`σ`(~θ, i) + ρ`(~θ)

= (θi − θ`)

(
σi(~θ, `)−

∏
j 6=i,`

(1− θj)

)
≤ (θi − θ`)σi(~θ, `) ≤ (1− θ∗)σ∗.

The proof concludes by applying the inequality from (c).

(e) Notice that π`i(~θ) is increasing in θi, so that one should take θi = θ to find the

minimum. If n = 2, then the minimum is reached by taking θ−i = θ as well. Suppose

n ≥ 3. The expression π`i(~θ) is linear in θk for all k 6= i, `. Thus one need only

consider the cases θk ∈ {θ, 1} for all k. Notice, however, that ρi(~θ) = 0 as soon as one

such θk = 1, in which case π`i(~θ) is decreasing in θj for j 6= i, `, k, and independent

of θ`. In addition, if θk = θ for all k 6= i, `, then π`i(~θ) is strictly increasing in θ` and

the minimum will be reached at θ` = θ. To summarize, the minimal π`i(~θ) is reached

at a profile ~θ where θi = θ, and other agents’ abilities are either all θ or all 1. The

probability premium is20 1−n(1−θ)n−1

n−1
in the former case, and θ

n−1
in the latter case. It

is then easy to check that the former expression is smaller than the latter if and only

if θ ≤ 1− n−2

√
1
n

(which is larger than θ∗).

Lemma 4. The matrix Bi(~θ) satisfies the following properties.

(a) Bi(~θ)~1 = 1−δγ
δ(1−γ)

~1 + ~πi(~θ).

(b) Diagonal entries of Bi(~θ) are positive. Off-diagonal entries are positive on rows

` with θi > θ`, negative on rows ` with θi < θ`, and zero on rows ` with θi = θ`.

(c) For each ` 6= i, let z` be the difference between row `’s diagonal entry and the sum

of the absolute value of its off-diagonal entries: z` = [Bi(~θ)]``−
∑

`′ 6=` |[Bi(~θ)]``′|.
If θi ≤ θ`, then z` = 1−δγ

δ(1−γ)
+ π`i. If θi ≥ θ`, then z` = 1−δγ

δ(1−γ)
+ 2πi` − π`i.

20Indeed, agents other than i are symmetric and the fact that one must be chosen implies (n −
1)θσi(~θ, `) + ρ`(~θ) = 1, or θσi(~θ, `) = 1−(1−θ)n−1

n−1 .
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(d) Bi(~θ) is (row) strictly diagonally dominant, and thus invertible.

(e) ||Bi(~θ)
−1||∞ ≤ 1

min 6̀=i z`
.

(f) Bi(~θ)
−1~πi(~θ) = [Id− 1−δγ

δ(1−γ)
Bi(~θ)

−1]~1.

(g) Bi(~θ)
−1 =

∑∞
k=0(−1)k(θi − θ∗)k(X−1

i Yi)
kX−1

i , where Xi is the matrix Bi(~θ)

evaluated at θi = θ∗, and Yi is the positive matrix whose ``′-entry is ρ`(~θ)
1−θi if

` = `′, and −θ`′ dσ`′dθi
(~θ, `) if ` 6= `′.

(h) Each component of the vector Bi(~θ)
−1~π(~θ) is increasing in θi, and each compo-

nent of the vector Bi(~θ)
−1~1 is decreasing in θi, for θi ∈ [θ∗, 1].

Proof. (a) Notice that∑
`′ 6=i,`

(πi`′(~θ)−π``′(~θ)) =
∑
`′ 6=i,`

θ`′(σ`′(~θ, i)−σ`′(~θ, `)) = ρ`(~θ)−ρi(~θ)+θiσi(~θ, `)−θ`σ`(~θ, i).

Thus the sum over the columns of the entries of Bi(~θ) appearing on row ` is equal

to 1 + 1−δ
δ(1−γ)

+ π`i(~θ). Thus Bi(~θ)~1 = 1−δγ
δ(1−γ)

~1 + ~πi(~θ), as desired.

(b) The fact that diagonal entries are positive is obvious. Off-diagonal entries on row

` are of the form πi`′(~θ)− π``′(~θ), which is equal to θ`′(σ`′(~θ, i)− σ`′(~θ, `)). The result

about the sign of off-diagonal entries then follows as the likelihood for a discerning `′

to be picked diminishes when part of a better pool of discerning agents.

(c) By (b), off-diagonal entries on a row ` are non-positive when θi ≤ θ`, in which

case z` is simply the sum of the elements appearing on row `, whose value is given in

(a). Suppose now θi ≥ θ`. The first computation in the proof of (a) shows that the

sum of the off-diagonal elements on row ` (which are all positive, by (b)) is equal to

π`i(~θ)− πi`(~θ). Thus z` = 1−δγ
δ(1−γ)

+ πi` − (π`i(~θ)− πi`(~θ)), and the result follows.

(d) We need to check z` > 0 for all `. Since 1−δγ
δ(1−γ)

> 1, the result follows from the fact

that π`i ≥ 0 for the case θ` ≥ θi, and from πi` ≥ 0 and π`i < 1 for the case θ` ≤ θi.

(e) This follows from the Ahlberg-Nilson-Varah bound (see e.g. Varah (1975)) since

Bi(~θ) is strictly diagonally dominant.

(f) Since Bi(~θ) is invertible by (e), multiply both sides of (a) by Bi(~θ)
−1.

(g) Notice that the entries of Bi(~θ) are affine functions of θi. Indeed, the matrix Yi

is obtained by taking the derivative with respect to θi of the entries of Bi(~θ), and
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is independent of θi. Thus Bi(~θ) = Xi + (θi − θ∗)Yi. The result then follows from

the power series expansion of matrix inverses, after showing that ||X−1
i Yi||∞ < 1.

To check this, first notice that ||X−1
i ||∞ < 1 by (e) given that θ` ≥ θ∗ for all ` 6= i.

Consider Yi next. It is a positive matrix, so its infinite norm is obtained by computing

for each row the sum of its entries, and then taking the maximum of these sums over

the rows. Observed that Yi is the derivative with respect to θi of the matrix Bi(~θ).

Using the computations from (a), the sum of the elements on row ` of Yi is simply

the derivative with respect to θi of π`i(~θ), which is equal to σi(~θ, `). This expression

is decreasing in ~θ for each `, and thus lower or equal to σ∗, which is less than 1. Then

||X−1
i Yi||∞ ≤ ||X−1

i ||∞||Yi||∞ < σ∗ < 1, as desired.

(h) By (a), the derivative of Bi(~θ)
−1~π(~θ) with respect to θi is equal to the op-

posite of the derivative of Bi(~θ)
−1~1, which by (g) is equal to

∑∞
k=1(−1)k+1k(θi −

θ∗)k−1(X−1
i Yi)

kX−1
i
~1.

Notice that 2(θi − θ∗)YiX−1
i
~1 ≤ 2(1− θ∗)YiX−1

i
~1 < ~1. The first inequality follows

from the facts that Yi and X−1
i (inverse of an M -matrix) are positive, and θi ≤ 1.

The strict inequality follows from (c) in Lemma 3, since each component of the vector

YiX
−1
i
~1 is lower of equal to ||YiX−1

i ||∞, which is strictly less than σ∗ (see (g) above).

Being a product of positive matrices, the matrix X−1
i YiX

−1
i is positive. Hence we

know X−1
i YiX

−1
i
~1− 2(θi − θ∗)(X−1

i Yi)
2X−1

i
~1 is a strictly positive vector. This corre-

sponds to the first two terms in the above expression for the derivative of Bi(~θ)
−1~π(~θ)

with respect to θi. A fortiori, 3X−1
i YiX

−1
i
~1−4(θi−θ∗)(X−1

i Yi)
2X−1

i
~1 is a strictly posi-

tive vector, and hence 3(θi−θ∗)2(X−1
i Yi)

3X−1
i
~1−4(θi−θ∗)3(X−1

i Yi)
4X−1

i
~1 is a strictly

positive vector as well (since (θi−θ∗)2(X−1
i Yi)

2 is a positive matrix). This corresponds

to the next two terms in the above expression for the derivative of Bi(~θ)
−1~π(~θ) with

respect to θi. Iterating the argument shows this derivative is strictly positive.

Lemma 5. Discerning agents are always willing to propose themselves when qualified.

Proof. Remember that discerning agents propose themselves when qualified if and

only if MQ
i (~θ)Bi(~θ)

−1~πi(~θ) ≤ ~σi(~θ). To establish this inequality, it is sufficient to

show that ||Bi(~θ)
−1~πi(~θ)||∞ ≤ 1, since MQ

i (~θ) is a positive matrix with the sum of

entries on any row ` equal to σi(~θ, `). It is sufficient to establish the upper-bound

on the infinite norm under the assumption that θi = 1, because of (h) in Lemma

4. Using ||Bi(~θ)
−1~πi(~θ)||∞ ≤ ||Bi(~θ)

−1||∞||~πi(~θ)||∞, combined with (c) and (e) from

42



Lemma 4, it is sufficient to check that

πki(~θ) <
1− δγ
δ(1− γ)

− π`i(~θ) + 2πi`(~θ), (25)

where k is an agent j 6= i that maximizes πji(~θ) and ` is an agent j 6= i that minimizes

2πij(~θ)− πji(~θ). Inequality (25) holds when k = `, since π`i(~θ)− πi`(~θ) ≤ 1/2 by (c)

in Lemma 3, and 1−δγ
δ(1−γ)

> 1. Suppose then k 6= `. Inequality (25) becomes (as θi = 1)

σi(~θ, k)− θ`σi(~θ, `)− 2ρi(~θ) + (1− θ`)σi(~θ, `) <
1− δγ
δ(1− γ)

.

It is sufficient to check that σi(~θ, k)− θ`σi(~θ, `) + (1− θ`)σi(~θ, `) ≤ 1. Notice that the

expression on the LHS is linear in θ`, and it is thus maximized by taking θ` = 1 or θ∗.

The inequality is obvious if θ` = 1, so let’s assume that θ` = θ∗. Thus it is sufficient

to prove that σi((θ
∗, ~θ−`), k) − θ∗σi(~θ, `) + (1 − θ∗)σi(~θ, `) ≤ 1. Remember θ∗ ≤ 1/2

when n ≥ 2, so the total weight on σi(~θ, `) is positive. The expression on the LHS is

thus ≤ (2− 2θ∗)σ∗. The desired inequality follows from (c) in Lemma 3.

Lemma 6. Unqualified discerning agents do not propose if δ ≥ 1
γ+(γ−β)π

.

Proof. Remember that discerning agents do not propose themselves when unqualified

if and only if ~σi(~θ) ≤MU
i (~θ)Bi(~θ)

−1~πi(~θ). By (f) from Lemma 4, this is equivalent to

~σi(~θ) +
1− δγ
δ(1− γ)

MU
i (~θ)Bi(~θ)

−1~1 ≤MU
i (~θ)~1 = ~σi(~θ) +

γ − β
1− γ

~σi(~θ),

or
1− δγ
δ(1− γ)

MU
i (~θ)Bi(~θ)

−1~1 ≤ γ − β
1− γ

~σi(~θ). (26)

The RHS is independent of θi, while all the components of the LHS vector are de-

creasing in θi (by (h) from Lemma 4, and since MU
i is a positive matrix). It is thus

sufficient to prove this inequality for θi = θ, which we assume from now on. Since MU
i

is positive, the LHS vector is smaller or equal to 1−δγ
δ(1−γ)

||Bi(~θ)
−1||∞MU

i (~θ)~1. Using (e)

from Lemma 4 and the fact that MU
i (~θ)~1 = 1−β

1−γ~σi(
~θ), it is sufficient to check that

1− δγ
δ(1− γ)

1
1−δγ
δ(1−γ)

+ min`6=i π`i(~θ)

1− β
1− γ

≤ γ − β
1− γ

,

or δ ≥ 1

γ+(γ−β) min` 6=i π`i(~θ)
. Observe π ≤ min`6=i π`i(~θ), for all ~θ ∈ [θ, 1]n s.t. θi = θ.
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Lemma 7. If the MLR is a belief-free equilibrium then δ ≥ 1
γ+(γ−β)π

for all i.

Proof. The proof of Lemma 6 shows that condition (26) is necessary and sufficient

for discerning agents to refrain from proposing when unqualified. Given θ, consider

the ability vector ~θ for which the minimal probability premium π is achieved. For the

MLR to be a belief-free equilibrium, it is necessary that it is an ex-post equilibrium

for this ~θ. By Lemma 3(e), this ability vector either has all agent abilities equal to

θ, or there is some agent i with ability θ and all others have ability 1. In both cases,

the value of π`i(~θ) is constant in `. By the characterization in Lemma 4(a), for this
~θ we have that Bi(~θ)~1 =

(
1−δγ
δ(1−γ)

+ π
)
~1. If a matrix has constant row sums equal to

s, then the inverse has constant row sums equal to 1/s. Thus B−1
i (~θ)~1 = 1

1−δγ
δ(1−γ)+π

~1.

Applying this expression as well as the fact that M b
i (
~θ)~1 = 1−β

1−γ~σi(
~θ) in the necessary

condition (26), we immediately obtain the desired condition on δ.

Proof of Proposition 6. Let V k denote the normalized discounted expected utility

of an agent in position k of the ranking. Consider the incentive constraint of not

proposing for an unqualified agent whose rank is between 1 and n− 1:

X + pδV k ≥ X + p[1− δ + βδV k + (1− β)δV j(k)],

where j(k) is the rank (≥ k) where the agent of rank k is sent after low profit, p

is the probability all agents ranked above are unqualified, and X is the expected

continuation value for an agent at rank k when the principal selects a higher-priority

(lower ranked) agent.21 The inequality is written more concisely as V k−V j(k) ≥ 1−δ
δ(1−β)

.

In particular, we see that j(k) must be strictly larger than k as the RHS is strictly

positive. In particular, V k ≥ V n + α(k) 1−δ
δ(1−β)

, for all k, where α(k) is the number of

times j(·) must be iterated to reach n. We have:

1 ≥
n∑
k=1

V k ≥ nV n +
n−1∑
k=1

α(k)
1− δ

δ(1− β)
. (27)

We can also determine a lower bound for V n. Notice that

V n = (1− θ)n−1(1− δ) + δV n +
n−1∑
k=1

p(k)(1− γ)δ(V j′(k) − V n),

21It is notationally heavy to develop X in terms of the V ’s as k may reshuffle position even if
others follow equilibrium strategies since γ < 1, but it does not matter since the term appears on
both sides.
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where j′(k) is the rank where n is sent if the agent at rank k gets low profit, and

p(k) = (1 − θ)k−1θ is the probability the agent of rank k is chosen. Thus V n ≥
(1 − θ)n−1 + P (1−γ)

(1−β)
, where P is the probability an agent of rank k with j′(k) 6= n is

picked (the sum of those p(k)’s).

Given (27), for the hierarchical strategy profile to be an equilibrium requires:

1 ≥ n
(

(1− θ)n−1 +
P (1− γ)

(1− β)

)
+

n−1∑
k=1

α(k)
(1− δ)
δ(1− β)

. (28)

On the other hand, MLR forms an equilibrium if and only if 22

1 ≥ n
(

(1− θ)n−1 +
(1− (1− θ)n−1)(1− γ)

(1− β)

)
+ (n− 1)

(1− δ)
δ(1− β)

. (29)

Consider the necessary condition (28) for the case of hierarchical strategy profiles

that send failing agents to the bottom. Here, P = 1− (1− θ)n−1 and α(k) = 1 for all

k, which proves the second half of the result in (b).

Consider next any hierarchical strategy profile. Observe that P ≥ θ(1 − θ)n−2

since j(k) = n for least one agent of rank k ≤ n− 1, with k = n− 1 in the worst-case

scenario. If the strategy profile does not send all failing agents to the bottom (the

case we have already treated), then
∑n−1

k=1 α(k) ≥ n. Thus in this case, (28) implies

the following necessary condition for the hierarchy to form an equilibrium:

1 ≥ n
(

(1− θ)n−1 +
θ(1− θ)n−2(1− γ)

(1− β)
+

(1− δ)
δ(1− β)

)
.

The second term is smaller than the corresponding term for MLR because θ(1 −
θ)n−2 < 1 − (1 − θ)n−1 over the relevant range of θ’s; but the last term is larger as

there is at least an extra 1−δ
δ(1−β)

. It is easy to find (e.g. taking γ near 1) parameter

combinations for which the MLR inequality is verified, but the above inequality is

violated. This proves (a).

Finally, we prove the first part of (b) by example. We let n = 3 and consider the

hierarchical strategy profile where the failing agent trades his spot with the one right

22One can check directly that the same condition on δ as in Proposition 5 but with π replaced

with 1−n(1−θ)n−1

n−1 . However, there is also an intuition why this must be true: For MLR, P is just

the probability that a discerning agent is picked, or 1 − (1 − θ)n−1, and each of the IC constraints
(only one common IC constraint really because of symmetry of the MLR) must be binding to get
the widest range of parameters, or V D−V LR = 1−δ

δ(1−β) , in which case we can derive the exact values

for V LR and V D, and the equation V LR + (n− 1)V D = 1 gives the largest range of parameters.
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after him in the ranking. The recursive equations that give the agents’ payoffs are:

V 1 = θ(1− δ) + p1δV
2 + (1− p1)δV 1

V 2 = (1− θ)θ(1− δ) + p1δV
1 + p2δV

3 + (1− p1 − p2)δV 2

V 3 = (1− θ)2(1− δ) + p2δV
2 + (1− p2)δV 3,

where p1 = θ(1 − γ) is the ex-ante probability the top player drops to second, and

p2 = (1− θ)p1 is the ex-ante probability the player in the second spot drops to third.

Now consider the case of β = 0, γ = 4/5, δ = 5/6 and θ = 1. The RHS of

inequality (29) is 3/5 + 2/5 = 1. Thus, MLR is a PPE for these parameters, but it

ceases to be one for any lower θ. Let us now look back at the recursive equations for

the hierarchical equilibrium. They become: V 1/3 − V 2/6 = 1/6, V 2/3 − V 1/6 = 0

and V 3 = 0, or V 1 = 2/3, V 2 = 1/3 and V 3 = 0. The IC constraints (as derived

earlier in the proof, using j(k) = k + 1) are V 1 − V 2 ≥ 1−δ
δ(1−β)

and V 2 − V 3 ≥ 1−δ
δ(1−β)

,

both of which hold strictly since 1−δ
δ(1−β)

= 1/5. The determinant of the matrix defining

continuation values is strictly positive at these parameters, so diminishing θ a bit will

only change those values a bit, and the ICs will still hold. �

A3 Characterization of principal-renegotiation-proof PPE

Proof of Proposition 8. Our first observation is that principal-renegotiation-proof

PPEs have a very simple payoff structure.

Lemma 8. Consider a PPE where the principal gets the same (maximum) discounted

expected payoff at the start of period, no matter the history. Then the principal gets

the same expected equilibrium payoff within each stage game.

Proof. Let X be the principal’s discounted payoff at the start of any period. Let

x be the principal’s expected equilibrium payoff within that period. Then X =

(1− δ)x+ δX, and hence x = X, which is independent of the history. �

This observation reduces the type of strategies that the principal employs in equi-

librium. For example, it cannot be that there is a history after which the principal

switches from not selecting the last agent who generated a low profit, to always se-

lecting that agent, because these can give different expected payoffs to the principal

within a stage game. Hence, characterizing the principal-renegotiation-proof PPEs

reduces to finding which stage game behaviors lead to the same outcome and whether
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those stage games in the same ‘equivalence class’ can be sequenced in a way that forms

a repeated-game equilibrium. It turns out that any PPE that satisfies our refinement

gives the principal either his first-best payoff or his one-shot Nash payoff.

Note that each agent has four strategies in the stage game: propose regardless of

qualification, don’t propose regardless of qualification, propose only when qualified,

and propose only when unqualified. There are thus sixteen combinations to consider

for the agents. As for the principal, renegotiation-proofness implies that she gets the

same discounted payoff at the beginning of any new round in the game, independently

of what happened in the past. Hence it must be that she selects agents optimally

in each repetition of the stage game taken individually (e.g. picking the discerning

agent instead of the last resort in the MLR strategy profile when both agents make

proposals). Otherwise, she has a profitable unilateral deviation by picking the one

that has a higher likelihood (given equilibrium reporting strategies) of being qualified.

We already analyzed the following cases: (i) both agent propose regardless of

their qualification, (ii) the most able agent proposes regardless of his qualification

while the other agent does not propose regardless of his qualification, and (iii) one

agent proposes only when qualified and the remaining agent proposes regardless of his

qualification (note that these are two cases since the identity of the constant proposer

can change). Cases (i) and (ii) correspond to the one-shot Nash equilibrium outcome,

while case (iii) corresponds to the MLR strategy profile.

A fourth possible case is when every period both agents propose only when they

are qualified. This generates the payoff
(
1− (1− θ1)(1− θ2)

)(
γH + (1− γ)L

)
to the

principal, which is higher than the one-shot Nash payoff if min{θ1, θ2} >
(
βH + (1−

β)L
)
/
(
γH + (1− γ)L

)
. We establish the following observation:

Lemma 9. Suppose there exists a PPE in which the agents propose if and only if

they are qualified and the principal picks one of the proposing agents. Then the MLR

strategy profile is also a PPE.

Proof of Lemma 9. We follow the same methodology as in the proof of Proposition

7. Using the same notation as in that proof, we let σi(∅) denote agent i’s promised

continuation payoff when no agent is selected.

Step 1. Deriving σ1. If σ1 is obtained when agent 1 is LR, then to find σ1 minimize
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(1− θ2)θ1 [(1− δ) + δ (γσ1(1S) + (1− γ)σ1(1F ))] +

(1− θ2)(1− θ1)δσ1(∅) + θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

subject to the IC constraints that both agents do not propose when unqualified:23

δ [θ1(γσ2(1S) + (1− γ)σ2(1F )) + (1− θ1)σ2(∅)]

≥ (1− δ) + δ (βσ2(2S) + (1− β)σ2(2F )) ,

for agent 2, and for agent 1: δσ1(∅) ≥ (1− δ) + δ [βσ1(1S) + (1− β)σ1(1F )]. As the

sum of continuation payoffs is always 1− (1− θ1)(1− θ2), we rewrite agent 2’s IC as

δβσ1(2S)+δ(1−β)σ1(2F ) ≥ (1−δ)+δθ1γσ1(1S)+δ(1−γ)θ1σ1(1F )+δ(1−θ1)σ1(∅).

Hence, we can decrease σ1(1S), σ1(1F ) all the way to σ1 (reduces the continuation

payoff and can only relax the IC). We then have the following problem:

min (1− θ2)θ1 [(1− δ) + δσ1] + (1− θ2)(1− θ1)δσ1(∅) + θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

s.t. the feasibility constraint that continuation payoffs lie in [σ1, σ1], and the IC’s

δ (βσ1(2S) + (1− β)σ1(2F )) ≥ (1− δ) + δθ1σ1 + δ(1− θ1)σ1(∅)

and δσ1(∅) ≥ (1− δ) + δσ1. Substituting the latter IC (which must clearly bind) into

the former, and also into the objective function, we wish to minimize

(1− θ2) [(1− δ) + δσ1] + θ2δ [γσ1(2S) + (1− γ)σ1(2F )]

subject to feasibility and σ1(2F ) = 1−δ
δ(1−β)

(2 − θ1) +
σ1

1−β −
β

1−βσ1(2S). Plugging this

back into the objective function we obtain that the coefficient on σ1(2S) is γ−β
1−β > 0.

We therefore wish to reduce σ1(2S) as much as possible, noting that a decrease in

σ1(2S) yields an increase in σ1(2F ). There are therefore two cases to consider:

Case 1. σ1(2S) = σ1 and σ1(2F ) = 1−δ
δ(1−β)

(2−θ1)+σ1 ≤ σ1 . In this case, σ1−σ1 ≥
1−δ

δ(1−β)
(2 − θ1) must hold. Setting σ1 equal to the objective in the minimization, we

obtain σ1 = (1− θ2) + θ2
1−γ
1−β (2− θ1). The necessary condition for Case 1 is therefore:

23As in the symmetric case, we ignore the remaining constraints, which will turn out to be without
loss.
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(1− θ2) + θ2
1− γ
1− β

(2− θ1) +
1− δ

δ(1− β)
(2− θ1) ≤ σ1.

To check when it is satisfied, we later examine maximizing 1’s continuation payoff.

Case 2. σ1(2F ) = σ1 and σ1(2S) = 1−δ
δβ

(2 − θ1) +
σ1

β
− 1−β

β
σ1 ∈ [σ1, σ1]. Setting

σ1 equal to the objective in the minimization problem, we obtain that

σ1 =
(1− δ)

[
(1− θ2) + θ2

γ
β
(2− θ1)

]
− δθ2σ1

[
γ−β
β

]
1− δ

[
(1− θ2) + θ2

γ
β

] . (30)

Step 2. Deriving σ1. We now maximize 1’s continuation payoff. Suppose first that

this occurs when 1 is discerning. We maximize

θ1 [(1− δ) + δ (γσ1(1S) + (1− γ)σ1(1F ))]

+ (1− θ1)δ [θ2(γσ1(2S) + (1− γ)σ1(2F )) + (1− θ2)σ1(∅)]

subject to the IC that neither agent wants to propose when unqualified:

δ [θ2(γσ1(2S) + (1− γ)σ1(2F )) + (1− θ2)σ1(∅)] ≥ (1− δ) + δ (βσ1(1S) + (1− β)σ1(1F ))

δσ2(∅) ≥ (1− δ) + δ (βσ2(2S) + (1− β)σ2(2F ))

and σ1 ∈ [σ1, σ1]. As continuation payoffs following each event sum to 1− (1−θ1)(1−
θ2), we rewrite agent 2’s IC as δ (βσ1(2S) + (1− β)σ1(2F )) ≥ (1−δ)+δσ1(∅). Setting

σ1(2S), σ1(2F ) = σ1 (increases objective and only relaxes IC), we wish to maximize

θ1 [(1− δ) + δ (γσ1(1S) + (1− γ)σ1(1F ))] + (1− θ1)θ2δσ1 + (1− θ1)(1− θ2)δσ1(∅)

subject to feasibility,

δθ2σ1 + (1− θ2)δσ1(∅) ≥ (1− δ) + δ (βσ1(1S) + (1− β)σ1(1F )) ,

and δσ1 ≥ (1 − δ) + δσ1(∅). Since the latter must bind, plugging into the other the

first IC, we obtain δσ1 ≥ (1− δ)(2−θ2)+ δ (βσ1(1S) + (1− β)σ1(1F )) , which clearly

must bind. Therefore the objective of maximization becomes:

(1− δ) (θ1 − (1− θ1)(1− θ2)) + θ1δ (γσ1(1S) + (1− γ)σ1(1F )) + (1− θ1)δσ1.
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To solve this problem, we must increase σ1(1S) as much as possible (intuitively,

increase agent 1’s payoff when he is discerning and succeeds), and have two cases:

Case 3. σ1(1S) = σ1 and σ1(1F ) = σ1 − (1−δ)
δ(1−β)

(2− θ2) ≥ σ1. Setting σ1 equal to

the objective, σ1 = θ1(2− θ2)γ−β
1−β − (1− θ2). So the necessary condition is

θ1(2− θ2)
γ − β
1− β

− (1− θ2)− (1− δ)
δ(1− β)

(2− θ2) ≥ σ1.

Case 4. σ1(1F ) = σ1 and σ1(1S) = σ1

β
− (1−β)σ1

β
− 1−δ

δβ
(2− θ2) ∈ [σ1, σ1]. Plugging

into the objective yields,

σ1 =
(1− δ)

(
θ1 − (1− θ1)(1− θ2)− θ1(2− θ2) γ

β

)
− δσ1θ1

(
γ
β
− 1
)

1− δ
(
θ1

γ
β

+ (1− θ1)
) . (31)

Since θ1−(1−θ1)(1−θ2)−θ1(2−θ2) γ
β
< 0, it must be that 1−δ

(
θ1

γ
β

+ (1− θ1)
)
< 0.

Step 3. Combining cases 1 and 3. From Case 3, σ1 = (θ1 − (1− θ1)(1− θ2))−
θ1(2− θ2) 1−γ

1−β and σ1 − σ1 ≥ 1−δ
δ(1−β)

(2− θ2), and from Case 1 we have σ1 = (1− θ2) +

θ2
1−γ
1−β (2− θ1) and σ1 − σ1 ≥ 1−δ

δ(1−β)
(2− θ1). Therefore, we have

σ1 − σ1 = 2 (θ1 + θ2 − θ1θ2)

(
γ − β
1− β

)
− 2 + θ1θ2.

And the combined necessary condition for the two cases is

δ ≥ maxi∈{1,2}

{
1

g(θ1,θ2,γ,β)
2−θi + 1

}
, (32)

where g(θ1, θ2, γ, β) = 2 (θ1 + θ2 − θ1θ2) (γ − β) − (1 − β)(2 − θ1θ2). Note that the

effective constraint is the one with the smaller θ1.

First assume θ1 ≤ θ2. We want to verify the necessary constraint for the candidate

equilibrium (proposing only when qualified) is more restrictive than that for MLR:

2− θ1

g(θ1, θ2, γ, β) + 2− θ1

>
1

β + (θ1 + θ2)(γ − β)
.

This inequality holds if and only if (θ2−θ1)(γ−β) > −(1−β)(1−θ2), which holds since

γ > β. The analogous argument holds for θ1 > θ2. Hence the necessary conditions of
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cases 1 and 3 are more stringent than the condition assuring MLR is a PPE.

Step 4. Combining cases 2 and 4. From Case 2 we have (30) and from Case 4

we have (31). Combining the two yields:

σ1 − σ1 =
(1− δ)

[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2

]
δ(θ1 + θ2)

(
γ
β
− 1
)
− (1− δ)

,

and the necessary conditions for these two cases reduce to

maxi∈{1,2}

{
(1− δ)(2− θi)

δ

}
≤ σ1 − σ1 ≤ mini∈{1,2}

{
(1− δ)(2− θi)

δ(1− β)

}
.

Suppose first that θ2 ≥ θ1. Then it suffices to check the upper bound (1−δ)(2−θ2)
δ(1−β)

and the lower bound (1−δ)(2−θ1)
δ

. Starting with the upper bound:

σ1 − σ1 =
(1− δ)

[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2

]
δ(θ1 + θ2)

(
γ
β
− 1
)
− (1− δ)

≤ (1− δ)(2− θ2)

δ(1− β)

which can be rewritten as

δ ≥ 2− θ2(
γ
β
− 1
)

[(2− θ2) (θ1 + θ2)− (1− β)2 (θ1 + θ2 − θ1θ2)] + (2− θ2)− (1− β) (2− θ1θ2)
.

We want to show that that this constraint is more restrictive than the one for MLR.

That is, that the RHS of the last inequality is greater than 1
β+(θ1+θ2)(γ−β)

. After some

algebra, it can be shown that this is equivalent to (θ2−θ1) γ
β

(β − 1) < (1−θ2)(1−β),

which is clearly satisfied since the LHS is negative. So for θ2 ≥ θ1 it must be that

the combination of cases 2 and 4 hold only under conditions more restrictive than

the equilibrium condition for MLR; equivalently, the condition for the existence of a

first-best equilibrium (there is no need to check the lower bound).

Next suppose θ2 < θ1. Then it suffices to check the upper bound (1−δ)(2−θ1)
δ(1−β)

and

the lower bound (1−δ)(2−θ2)
δ

. As before, we start with the upper bound:

σ1 − σ1 =
(1− δ)

[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2

]
δ(θ1 + θ2)

(
γ
β
− 1
)
− (1− δ)

≤ (1− δ)(2− θ1)

δ(1− β)
,
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or equivalently

δ ≥ 2− θ1

(2− θ1)(θ1 + θ2)
(
γ
β
− 1
)

+ (2− θ1)− (1− β)
[
2 (θ1 + θ2 − θ1θ2)

(
γ
β
− 1
)

+ 2− θ1θ2

] .
(33)

We therefore want to show that the RHS of this last inequality is greater than
1

β+(θ1+θ2)(γ−β)
. This is equivalent to the inequality (1−β)(1−θ1) > γ

β
(θ1 − θ2) (β − 1) ,

which holds since the RHS is negative. It follows that the conditions for cases 2 and

4 are more stringent than the condition for attaining the first-best in PPE.

Step 5. Combining cases 1 and 4. From Case 1 we have σ1 = (1 − θ2) +

θ2
1−γ
1−β (2− θ1), and σ1 − σ1 ≥ 1−δ

δ(1−β)
(2− θ1), and from Case 4 we have

σ1 =
(1− δ)

(
(1− θ1)(1− θ2)− θ1 + θ1(2− θ2) γ

β

)
+ δσ1θ1

(
γ
β
− 1
)

δ
(
θ1

γ
β

+ (1− θ1)
)
− 1

(34)

and σ1 − σ1 ∈
[

(1−δ)(2−θ2)
δ

, (1−δ)(2−θ2)
δ(1−β)

]
. Combining these, a necessary condition is:

(2− θ1)[1− θ2(γ−β
1−β )]− θ1 + θ1(2− θ2) γ

β

δ
(
θ1

γ
β

+ (1− θ1)
)
− 1

≤ (2− θ2)

δ(1− β)
.

An implicit requirement for Case 4 is δ
(
θ1

γ
β

+ (1− θ1)
)
−1 > 0, since the numerator

in the expression (34) is positive and hence the denominator must also be positive to

guarantee σ1 > 0. Therefore, rearranging the necessary condition above yields:

δ ≥ 2− θ2

θ1(2− θ2)γ + (1− θ1)(2− θ2) + θ2(2− θ1)(γ − β)− 2(1− β)(1− θ1)
. (35)

We want to show the RHS of (35) is greater than 1
β+(θ1+θ2)(γ−β)

. Using algebra, the

last inequality is equivalent to (1−β)−θ1(1−γ)− (γ−β)θ2 > 0, which clearly holds.

Step 6. Combining cases 2 and 3. From Case 3 we have

σ1 = (θ1 − (1− θ1)(1− θ2))− θ1(2− θ2)
1− γ
1− β

and σ1−σ1 ≥ 1−δ
δ(1−β)

(2−θ2), and from Case 2 we have (30) and σ1−σ1 ∈
[

(1−δ)(2−θ1)
δ

, (1−δ)(2−θ1)
δ(1−β)

]
.
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Solving for σ1 − σ1, we get

σ1 − σ1 = (1− δ)
2(1− θ2) + γ

β
θ2(2− θ1)− θ1(2− θ2)γ−β

1−β

δ
[
(1− θ2) + θ2

γ
β

]
− 1

.

One necessary condition is therefore:

2(1− θ2) + γ
β
θ2(2− θ1)− θ1(2− θ2)γ−β

1−β

δ
[
(1− θ2) + θ2

γ
β

]
− 1

≤ (2− θ1)

δ(1− β)
.

Suppose first that δ
[
(1− θ2) + θ2

γ
β

]
−1 > 0, i.e., δ > 1

(1−θ2)+θ2
γ
β

. Then after some

algebra we obtain that the necessary condition can be rewritten as

2− θ1≤ δ
(

(2− θ
1
)(1− θ2) + (2− θ1)θ2

γ

β
+θ1(2− θ2)(γ − β)− (1− β)2(1− θ2)

− γ

β
θ2(2− θ1) + γθ2(2− θ1)

)
.

Note that if the RHS is negative, we are done, since a necessary condition for cases 2

and 3 cannot be satisfied. We can therefore divide to obtain

δ ≥ 2− θ1

(2− θ1)(1− θ2) + θ1(2− θ2)(γ − β)− (1− β)2(1− θ2) + γθ2(2− θ1)
. (36)

We want to show that the RHS of (36) is greater than 1
β+(θ1+θ2)(γ−β)

. This inequality

reduces to (1 − β) − (γ − β)θ1 − θ2(1 − γ) > 0, which holds since (1 − β) − (γ −
β)θ1 − θ2(1 − γ) > (1 − β) − (γ − β) − (1 − γ) = 0. It remains to consider the

case δ
[
(1− θ2) + θ2

γ
β

]
− 1 < 0, i.e., δ < 1

(1−θ2)+θ2
γ
β

. Recall that another necessary

condition for cases 2 and 3 is that

σ1 − σ1 =
2(1− θ2) + γ

β
θ2(2− θ1)− θ1(2− θ2)γ−β

1−β

δ
[
(1− θ2) + θ2

γ
β

]
− 1

≥ (2− θ1)

δ
.

Rearranging, since δ
[
(1− θ2) + θ2

γ
β

]
− 1 < 0, we get

2− θ1 ≤ δθ1

(
(2− θ2)

γ − β
1− β

− (1− θ2)

)
.
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If (2− θ2)γ−β
1−β − (1− θ2) < 0, we are done. If (2− θ2)γ−β

1−β − (1− θ2) > 0, we get

2− θ1

θ1

[
(2− θ2)γ−β

1−β − (1− θ2)
] ≤ δ. (37)

We therefore get a contradiction if we show that

2− θ1

θ1

[
(2− θ2)γ−β

1−β − (1− θ2)
] > 1

(1− θ2) + θ2
γ
β

(38)

since this, together with (37), contradicts δ < 1
(1−θ2)+θ2

γ
β

. Indeed, (38) simplifies to

(2− θ2)

(
1− θ1

γ − β
1− β

)
+ θ2

(
(2− θ1)

γ

β
− 1

)
> 0,

which holds since 1− θ1
γ−β
1−β > 0 and (2− θ1) γ

β
− 1 > 0.

Step 7. Verifying the postulated configuration of roles.

Claim 1. σ1 is attained when agent 1 is last-resort.

Proof. Assume, by contradiction, that σ1 is attained when agent 1 is discerning,

σ1 ≥ min θ1[(1− δ) + δ
(
γσD1 (1S) + (1− γ)σD1 (1F )

)
+ (1− θ1)δ

(
θ2

(
γσD1 (2S) + (1− γ)σD1 (2F )

)
+ (1− θ2)σD1 (∅)

)
.

The IC constraint of agent 1 for not proposing when unqualified is:

δ
(
θ2

(
γσD1 (2S) + (1− γ)σD1 (2F )

)
+ (1− θ2)σD1 (∅)

)
≥ (1− δ) + δ

(
βσD1 (1S) + (1− β)σD1 (1F )

)
.

Hence, we must have:

θ1

(
(1− δ) + δ

(
γσD1 (1S) + (1− γ)σD1 (1F )

))
+ (1− θ1)δ

(
θ2

(
γσD1 (2S) + (1− γ)σD1 (2F )

)
+ (1− θ2)σD1 (∅)

)
≥ θ1

(
(1− δ) + δ

(
γσD1 (1S) + (1− γ)σD1 (1F )

))
+ (1− θ1)

(
(1− δ) + δ

(
βσD1 (1S) + (1− β)σD1 (1F )

))
≥ (1− δ) + δσ1.

But this implies that σ1 ≥ (1− δ) + δσ1 or that σ1 ≥ 1, a contradiction.

Claim 2. σ1 is attained when agent 1 is discerning.
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Proof. By contradiction, assume σ1 is attained when agent 1 is last-resort. Then

σ1 ≤ max(1− θ2)
(
θ1

(
(1− δ) + δ

(
γσLR1 (1S) + (1− γ)σLR1 (1F )

))
+ δ(1− θ1)σLR1 (∅)

)
+ δθ2

(
γσLR1 (2S) + (1− γ)σLR1 (2F )

)
The IC constraint of the discerning agent 2 for not proposing when unqualified is:

(1−δ)+δ
(
βσD2 (2S) + (1− β)σD2 (2F )

)
≤ δθ1

(
γσD2 (1S) + (1− γ)σD2 (1F )

)
+δ(1−θ1)σD2 (∅).

Since σLR1 (x) +σD2 (x) = 1 for x ∈ {1S, 1F, 2S, 2F}, we can rewrite the constraint:

(1−δ)+δθ1

(
γσLR1 (1S) + (1− γ)σLR1 (1F )

)
+δ(1−θ1)σLR1 (∅) ≤ δ

(
βσLR1 (2S) + (1− β)σLR1 (2F )

)
.

Therefore:

(1− θ2)
(
θ1

(
(1− δ) + γδσLR1 (1S) + (1− γ)δσLR1 (1F )

)
+ (1− θ1)δσLR1 (∅)

)
+ θ2δ

(
γσLR1 (2S) + (1− γ)σLR1 (2F )

)
≤ −(1− θ2)(1− θ1)(1− δ) + (1− θ2)δ

(
βσLR1 (2S) + (1− β)σLR1 (2F )

)
+ θ2δ

(
γσLR1 (2S) + (1− γ)σLR1 (2F )

)
≤ δσ1.

But this implies that σ1 ≤ δσ1 or 1 ≤ δ. �

This implies that if the principal’s first-best cannot be attained in a PPE, then

there cannot be a PPE where the agents propose if and only if they are qualified.

It is straightforward to verify that none of the remaining cases lead to an expected

stage-game payoff for the principal that is higher than that of the one-shot Nash. �

A4 Losses

Proof of Proposition 9. Recall the necessary conditions derived for the four cases

in the proof of Lemma 9 (inequalities (32)-(33)). When θ1 = θ2 = θ the lower bound

for cases (1+3), (2+3) and (1+4) are exactly the same, and lower than that of (2+4).

Hence, a necessary condition for this case is:

δ ≥ 1

2θ(γ − β)− (1− β)(2−θ2
2−θ ) + 1

.
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This requires 1− 1−γ
1−β >

2−θ2
2θ(2−θ) , which is impossible given 2−θ2

2θ(2−θ) > 1. �

A5 General profit distributions

Recall the definitions of Q, U , y, ȳ, γ∗, β∗, and the adjusted-MLR strategy from the

main text. We now examine how the punishment set Y should be chosen to sustain

the equilibrium, when possible. Consider, for instance, the model with uncertain

abilities in [θ, 1]2 that we characterized in Proposition 2. As seen from that result,

the first-best is achievable in a belief-free equilibrium if and only if for all agents i,

δ ≥ 1

β∗ + 2θ(γ∗ − β∗)
=

1

1− PU(Y ) + 2θ(PU(Y )− PQ(Y ))
. (39)

First, it is clear from (39) that the punishment set Y must be more likely for an

unqualified agent than a qualified one (i.e., γ∗ > β∗). Intuitively, the ICs would be

impossible to satisfy if this were not the case. Moreover, the punishment set must be

chosen so that the denominator in (39) is strictly larger than one, or equivalently:

2θ >
PU(Y )

PU(Y )− PQ(Y )
=

PU(Y )/PQ(Y )

PU(Y )/PQ(Y )− 1
. (40)

The smallest θ for which this is possible is obtained by picking Y to maximize the

likelihood ratio PU(Y )/PQ(Y ) that the punishment set comes from an unqualified

agent versus a qualified one. If there is a profit y in the support of B but not G, then

this ratio is made arbitrarily large by setting Y = [y − ε, y + ε] for small enough ε.

What happens when unqualified agents can’t be identified with certainty (i.e.,

the support of U is contained in the support of Q)? Suppose, for instance, that U

and Q have continuous densities u and q satisfying the monotone likelihood ratio

property, with u(y)/q(y) decreasing in y.24 Assuming y ∈ supp u, the maximum of

PU(Y )/PQ(Y ) can be shown to be limy→y u(y)/q(y).25 Hence a belief-free equilibrium

achieves first-best if 2θ >
limy→y u(y)/q(y)

limy→y u(y)/q(y)−1
. If the likelihood ratio goes to infinity as y

24The case of probability mass functions u, q satisfying MLRP is similar.
25For Y = [y, y], we have limy→y PU (Y )/PQ(Y ) = limy→y U(y)/Q(y) = limy→y u(y)/Q(y) by

l’Hôpital’s rule. For any other Y with positive measure under U (and thus Q, by assumption),

PU (Y )

PQ(Y )
=

∫
y∈Y u(y)dy∫
y∈Y q(y)dy

=

∫
y∈Y

u(y)
q(y) q(y)dy∫

y∈Y q(y)dy
≤ lim
y→y

u(y)

q(y)
.
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decreases to y, then for any θ > 1/2, one can find y∗ low enough to ensure first-best

can be achieved in a belief-free way with Y = [y, y∗] for sufficiently patient agents.

We may want to select the punishment set so that first-best is achievable for the

largest range of δ’s. Given (39), choose Y to maximize the objective:

−PU(Y ) + 2θ[PU(Y )− PQ(Y )] =

∫
y∈Y

(
(2θ − 1)u(y)− 2θq(y)

)
dy.

To that end, a profit level y should be included in the punishment set if and only if

u(y)

q(y)
≥ 2θ

2θ − 1
. (41)

Under the monotone likelihood ratio property, the optimal punishment set will be an

interval Y = [y, y∗], where y∗ satisfies condition (41) with equality.
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