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Abstract

We formalize the argument that political disagreements can be

traced to a “clash of narratives”. Drawing on the “Bayesian Net-

works” literature, we represent a narrative by a causal model that

maps actions into consequences, weaving a selection of other random

variables into the story. Narratives generate beliefs by interpreting

long-run correlations between these variables. An equilibrium is de-

fined as a probability distribution over narrative-policy pairs that max-

imize a representative agent’s anticipatory utility - capturing the idea

that people are drawn to hopeful narratives. Our equilibrium analy-

sis sheds light on the structure of prevailing narratives, the variables

they involve, the policies they sustain and their contribution to polit-

ical polarization.
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1 Introduction

The idea that political disagreements can be traced to a “clash of narratives”

has become commonplace. According to this view, divergent opinions involve

more than heterogeneous preferences or information: they can arise from

conflicting stories about political reality. Accordingly, public-opinion makers

try to shape the popular narratives that surround policy debates, because a

policy gains in popularity if it can be sustained by an effective narrative.

There are countless expressions of this idea in popular and academic

discourse. A journalistic profile of a former aide of President Obama begins

with the words “Barack Obama was a writer before he became a politician,

and he saw his Presidency as a struggle over narrative”.1 Crow and Jones

(2018) write: “There can be little doubt then that people think narratives are

important and that crafting, manipulating, or influencing them likely shapes

public policy”. They add that narratives simplify complex policy issues “by

telling a story that includes assertions about what causes what, who the

victims are, who is causing the harm, and what should be done”.

In this paper we formalize the idea that public-opinion battles involve

competing narratives. Of course, the term “narrative”is vague; any formal-

ization inevitably leaves certain aspects outside the scope of investigation.

Echoing the above Crow-Jones quote, our model is based on the idea that

political narratives can be regarded as causal models that map actions to

consequences. Following the “Bayesian networks” literature in Statistics,

Artificial Intelligence and Psychology (Cowell et al. (1999), Sloman (2005),

Pearl (2009)), we represent such causal models by directed acyclic graphs

(DAGs).

In our model, what defines a narrative is the variables it incorporates

and the way these are arranged in the causal mapping from actions to con-

sequences. For instance, consider a debate over US trade policy and its

possible implications for employment. Suppose the public has homogenous

preferences over actions and consequences; disagreements only arise from

1See https://www.newyorker.com/magazine/2018/06/18/witnessing-the-obama-
presidency-from-start-to-finish.
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different beliefs. The DAG

trade policy → imports from China → employment (1)

represents a narrative that weaves a third variable (imports from China) into

a causal story about the employment consequences of trade policy.

The nodes in the DAG represent variables (not the values they can take),

and the links represent perceived direct causal effects (but not the sign or

magnitude of these effects). The variables are coarse-grained, such that the

narrative does not describe a single historical episode. Instead, it addresses

numerous historical episodes, alerting the public’s attention to long-run cor-

relations between adjacent variables along the causal chain and offering a

particular causal interpretation of these correlations. In general, our model

assumes that when the public adopts a narrative, it constructs a belief by

fitting the causal model to objective data. As in Spiegler (2016), this means

factorizing the long-run distribution (over the DAG variables) according to

the Bayesian-Network factorization formula. The public relies on this belief

to evaluate the policy that the narrative promotes, where a policy is defined

as a mixture over actions.

We refer to the causal model (1) as a “lever narrative”because it regards

imports from China as a “lever” (or a mediator, to use statisticians’ jar-

gon) - i.e., an endogenous variable that is influenced by actions and in turn

influences the target variable. To the extent that imports from China are neg-

atively correlated with both protectionism and employment, this narrative

intuitively supports a protectionist policy. But while the support is intuitive,

it is illusory if the narrative’s causal structure is false - e.g. if the correlation

between employment and imports from China is actually due to confounding

by exogenous technological change. A false narrative will typically induce a

distorted belief regarding the mapping from actions to consequences.

The following is another example of a lever narrative in the context of

a foreign policy question, whether to impose economic sanctions on a rival

country with a hostile regime. The public considers destabilizing the regime

a desirable outcome. A lever narrative that intuitively gives support to a
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hawkish policy is

sanction policy → economic situation in rival country → regime strength

The following is a lever narrative that involves a different “lever”:

sanction policy → nationalism in rival country → regime strength

This narrative intuitively supports a dovish policy, to the extent that na-

tionalism in the rival country is positively correlated with the strength of its

regime and ameliorated by a soft stance on sanctions. We can see that two

narratives may have the same “lever”structure but differ in the “lever vari-

ables”and consequently in the policies to which they lend intuitive support.

Likewise, the same variable can be assigned different roles in the causal

scheme. For instance, the following is a foreign-policy narrative that treats

nationalism as an exogenous variable:

sanction policy → regime strength ← nationalism in rival country

We refer to a narrative with this structure as a “threat/opportunity narra-

tive”, because it regards the third variable as an external factor that the pol-

icy needs to cope with (rather than influencing it). In Section 3.1 we show

how this narrative can lend intuitive support to a hawkish policy. Thus,

narratives can differ in the variables they incorporate or in the role these

variables play in the causal mapping from actions to consequences. Differ-

ent narratives will typically generate different political beliefs because they

manipulate correlations between different sets of variables.

But how does the public respond to competing narratives that support

conflicting policies? In the context of policy debates, we find it natural to

assume that people are drawn to hopeful narratives. By “hopeful”, we do

not mean that appealing narratives portray a rosy picture of the status quo

(i.e., the distribution over consequences given historical action frequencies),

but rather that they promise a “better future”(i.e., a preferred distribution

over consequences) if a different action mixture is implemented. Because in-
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dividual voters have little influence over public policy, they incur negligible

decision costs when indulging in hopeful fantasies about the effects of coun-

terfactual policies. Therefore, anticipatory feelings can be a powerful driving

force behind political positions.2

Accordingly, we assume that the public selects a narrative-policy pair

that maximizes anticipatory utility, subject to one empirical-consistency con-

straint: a narrative is credible if it correctly predicts the empirical distrib-

ution over consequences. If this condition is satisfied, the public is ready

to believe the narrative’s prediction regarding the consequences of a differ-

ent policy. In other words, narratives can spin hopeful fantasies about the

consequences of the policies they espouse, but not about the status quo.

Thus, our model is based on two related premises. First, political beliefs

are shaped by narratives, which are simplified causal models that interpret

long-run correlations. Second, in the presence of competing narratives, peo-

ple are drawn to ones that promise a “happy ending”. We define an equilib-

rium as a long-run distribution over narrative-policy pairs, such that every

element in the support maximizes a representative agent’s anticipatory util-

ity, subject to the above empirical-consistency constraint. We refer to this

concept as “equilibrium” because the distribution over policies can affect

narrative-based evaluation of individual policies; a change in the empirical

action distribution can affect the relative appeal of competing narratives.

This feedback effect is a hallmark of behavior that is generated by misspeci-

fied causal models (see Spiegler (2016)), and it is what creates the need for

an equilibrium approach to competing narratives.

We employ our equilibrium concept to explore several questions: what

is the structure of narratives that support a given policy, and what kind of

variables do they involve? Can we account for divergent political beliefs or

swings between prevalent political positions? What explains the popularity of

certain real-life political narratives? Our results demonstrate the formalism’s

potential to shed light on such questions.

2In their book on the use of narratives to win public support, De Graaf et al. (2015)
argue that one of the major features of an effective narrative is the prospect of success:
“... the overarching story told by incumbent policy-makers must, to some extent, be a
narrative of progress.”
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Related literature

The idea that people reason about empirical regularities in terms of “causal

stories” (representable by DAGs) has been embraced by psychologists of

causal reasoning (Sloman (2005), Sloman and Lagnado (2015)). In Spiegler

(2016), it underlies a model of decisions under causal misperceptions, in which

the decision maker forms a belief by fitting a subjective causal model to long-

run data. This remains a building block of his paper, which goes beyond it

in two major directions. First, the variables that appear in a causal model

are selected endogenously. Second, we assume “hedonic”selection between

competing causal models.

We are aware of at least three economics papers that draw attention to

the role of narratives in economic contexts. Given that the term “narrative”

has such a loose meaning, it should come as no surprise that it has received

very different formalizations. Shiller (2017) regards certain terms that appear

in popular discourse as indications of specific narratives and proposes to use

epidemiological models to study their spread. Benabou et al. (2016) focus on

moral decision making and formalize narratives as messages or signals that

can affect decision makers’beliefs regarding the externality of their actions.

Levy and Razin (2018) use the term to describe information structures in

game-theoretic settings that people postulate to explain observed behavior.

Schwartzstein and Sunderam (2019) propose an alternative approach to “per-

suasion by models”, where models are formalized as likelihood functions and

the criterion for selecting models is their success in accounting for historical

observations.

The idea that people adopt distorted beliefs to enhance their anticipatory

utility has precedents in the economics literature (Akerlof and Dickens (1982),

Benabou and Tirole (2002,2016), Brunnermeier and Parker (2005), Spiegler

(2008)). Relative to this literature, the key innovation here is that the object

of agents’choice is not beliefs but (causal) models: wrong beliefs emerge as

a consequence of fitting a misspecified model to historical data. This feature

constrains agents’ ability to distort reality and leads to novel equilibrium

effects. Recently, Montiel Olea et al. (2018) studied “competing models”in

a different context of experts who compete for the right to make predictions.
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Each expert believes in a linear regression model that differs in the set of

variables it admits. Winning models thus maximize the indirect expected

utility they induce when estimated against a random sample.

Finally, our paper joins a handful of works in so-called “behavioral polit-

ical economics”that study voters’belief formation according to misspecified

subjective models or wrong causal attribution rules - e.g., Spiegler (2013),

Esponda and Pouzo (2017).

2 An Example: “Easy Fix”Narratives

Before formally presenting our framework, we illustrate its key ideas with

a simple example, which also showcases the framework’s ability to express

ideas that are informally discussed in popular media.

Demagoguery is a common feature of public opinion. Demagogues often

spin oversimplified descriptions of a complex social problem, attributing it

to a single (often spurious) cause and suggesting it has an “easy fix”. This

seems to be a hallmark of so-called “populist narratives”. By contrast, a

“rational” narrative would more faithfully describe the factors behind the

social problem and acknowledge that it lacks simple solutions. Our example

captures the tension between rational and easy-fix narratives.

Consider a public debate about how an action a can affect an outcome y.

In reality, y has a “root cause”θ that cannot be influenced by a. Instead, a

can only influence s, a “symptom”of θ. The actual causal relations among

these four variables are represented by the DAG G∗ : a → s ← θ → y. The

long-run distribution p over a, θ, s, y obeys this causal structure. All variables

take values in {0, 1}. The long-run frequency of a = 1 is p(a = 1) = α, to be

endogenized later; p(θ = 1) = δ ∈ (ε, 1−ε), independently of a, where ε > 0 is

arbitrarily small; p(y = θ | θ) = 1 for all θ; and p(s = 1 | a, θ) ≡ a+(1−a)θ.3

We offer two economic stories for this process, in both of which y repre-

sents working-class wellbeing. In one story, θ represents technological change,

s represents foreign trade and a represents tariff policy. In the other story,

3In general, we need p to have full support, in order to avoid certain zero-probability
events. In this example we only need to require that α, δ ∈ (0, 1).
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θ represents independent trends in developing economies, s represents immi-

gration and a represents immigration policy.4

A representative agent (referred to as “the public”) needs to choose a

policy, which is a probability mixture over actions. We let d denote the

weight the policy puts on a = 1, and force it to lie in [ε, 1−ε]; this restriction
will later ensure that α ∈ (0, 1). The public’s payoff is y− 1

2
(d− ε)2. That is,

y = 1 is the desirable outcome, and any departure from the lowest possible

policy is costly.

The public faces a supply of policy recommendations. Each recommen-

dation is coupled with a narrative, which is a DAG over some subset of the

four relevant variables. For the sake of this example, imagine there are only

two possible narratives: the “rational narrative”given by the correct DAG

G∗, and the “easy-fix narrative” given by the DAG Ge : a → s → y. The

latter is a lever narrative that neglects the root cause of y and misrepresents

the symptom s as a lever for changing y.5

We think of narrative-policy pairs (G, d) as being proposed by implicit

“narrators”(news outlets, politicians, pundits). We do not model narrators

explicitly as distinct agents, because this is not necessary for our model (in

analogy to the shadow role of price makers in competitive equilibrium). To

evaluate a narrative-policy pair, the public computes its induced expected

anticipatory payoff, and adopts a pair (G, d) that offers the highest anticipa-

tory payoff. This means that G is the “prevailing narrative”and the policy

d gets implemented (such that a = 1 is taken with probability d).

We will now motivate a notion of a steady state in this scenario of compet-

ing narrative-policy pairs. As with other equilibrium concepts in economic

theory (such as competitive equilibrium), we have in mind an underlying dy-

namic adjustment process. At every time period, narrative-policy pairs vie

for public support. The public has a long but bounded memory. To calculate

its anticipatory utility from each pair - in a way we describe below - it relies

4Frum (2019) proposed that rising income and human capital in developing countries
allows more individuals to migrate into developed economies.

5Our analysis is robust to expanding the set of feasible narratives to include all DAGs
in which a is an ancestral node and there is a direct link a → s (consistent with the
interpretation that a is a policy instrument that manifestly impacts s).
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on the empirical frequencies of a, θ, s, y in the M most recent periods, where

M is arbitrarily large (such that p approximates these frequencies). The ac-

tion taken at that period is a random draw from the selected policy. This

action influences the realization of s (but not θ and y). The same scenario

is repeated in the next period.

We will later see that as the M -truncated history changes over time, so

can the relative appeal of different narrative-policy pairs. This is what makes

the dynamic process non-trivial. We look for a notion of a steady state of

this process. Again, as with other equilibrium concepts in economics, ours is

defined in purely static terms; the dynamic story that motivates it remains

in the background.

Let us begin from a putative steady state in which the only prevailing nar-

rative is G∗. Because this narrative correctly describes the causal structure

underlying p, it correctly predicts that y = 1 with probability δ, regardless

of the action taken. Therefore, a narrative-policy pair (G∗, d) will induce the

anticipatory payoff δ − 1
2
(d − ε)2. Only narrators who accompany G∗ with

the ideal policy ε will prevail, inducing an anticipatory utility of δ. The

steady-state action frequency α would be ε.

Yet now suppose that a narrator enters this seemingly stable public-

opinion scene with a narrative-policy pair (Ge, d), where d > ε. To calculate

the anticipatory payoff induced by this pair, we first define the conditional

consequence distribution induced by the easy-fix narrative:

pGe(y | a) =
∑
s=0,1

p(s | a)p(y | s) (2)

This definition captures the idea that the belief is formed by fitting the causal

model Ge : a → s → y to the long-run distribution p. The interpretation

is as follows. Since the easy-fix narrative postulates that a influences y via

the lever s, it alerts the public to the conditional distributions (p(s | a)) and

(p(y | s)) and combines them in accordance with the causal chain a→ s→ y.

Thus, Ge invites the public to view long-run correlations through prism of a

particular causal model.
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Let us now calculate the terms in (2), given our specification of p:

p(s = 1 | a = 1) = 1

p(s = 1 | a = 0) = δ

p(y = 1 | s = 1) =
δ

δ + (1− δ)α
p(y = 1 | s = 0) = 0

Therefore, the anticipatory utility induced by (Ge, d) is

U(Ge, d;α) = d · 1 · δ

δ + (1− δ)α + (1− d) · δ · δ

δ + (1− δ)α −
1

2
(d− ε)2

= δ · δ + (1− δ)d
δ + (1− δ)α −

1

2
(d− ε)2 (3)

Since α = ε ≈ 0 under the putative stable long-run distribution, U(Ge, d;α) ≈
δ + (1 − δ)d − 1

2
d2. The policy that maximizes this expression is d = 1 − δ,

inducing an anticipatory utility of δ+ 1
2
(1−δ)2. This is strictly higher than δ,

which, as we recall, is the anticipatory utility delivered by the narrative-policy

pair (G∗, ε). This means that when G∗ is the only prevailing narrative, the

resulting long-run distribution is unstable. A demagogic narrator can invade

the public-opinion scene with the easy-fix narrative and a non-ideal policy, a

combination that will become more popular than the existing narrative-policy

pair. Although the proposed policy is costly, the easy-fix narrative (falsely)

argues that the benefit outweighs the cost because the social problem has a

simple solution.

Note that although Ge conveys a false promise conditional on deviating

from the status-quo policy α, it does correctly predict the expected outcome

if the policy adheres to the status quo: when we plug d = α, we obtain

α · pGe(y = 1 | a = 1) + (1− α) · pGe(y = 1 | a = 0) = δ

Note that this equation would hold for any α. Thus, the narrative Ge is

partly credible, in the sense that it makes an accurate prediction if no new

policy is adopted and the status-quo action distribution α is maintained.

10



We will later refer to (a weaker version of) this property as “No Status-Quo

Distortion”(NSQD). To a lay audience, it will not be obvious that Ge is false

- its wrong predictions only transpire under a counterfactual policy.

The rise to dominance of the pair (Ge, 1 − δ) when α = ε means that

gradually over time, the frequency of a = 1 will shift upward, since 1−δ > ε.

However, as α increases, U(Ge, 1 − δ;α) goes down. The intuition is that

as the gap between the status-quo and proposed policies shrink, the easy-

fix narrative’s power to convey false hope diminishes. As a result, the policy

that maximizes (3) decreases with α. By comparison, the anticipatory utility

of the pair (G∗, ε) remains δ even as α increases.

A stable point of this process will be reached when the long-run ac-

tion frequency hits a level α∗ for which U(Ge, de;α∗) = δ, where de =

arg maxd U(Ge, d;α∗). In this case, the two pairs (G∗, ε) and (Ge, de) both

maximize anticipatory utility, such that either of them can prevail. More-

over, this equilibrium is locally stable. If α is perturbed above (below) α∗,

the rational (easy-fix) narrative will become more popular and its accompa-

nying policy will be implemented; this will cause α to gradually shift back

down (up) toward α∗.

In general, we will define an equilibrium as a distribution σ over pairs

(G, d) that maximize the public’s anticipatory utility (subject to the NSQD

constraint), calculated against the long-run action frequency induced by σ

itself. The complete characterization of equilibrium in our example is given

by the following conditions:

de = arg max
d

(
δ · δ + (1− δ)d

δ + (1− δ)α∗ −
1

2
(d− ε)2

)
δ = δ · δ + (1− δ)de

δ + (1− δ)α∗ −
1

2
(de − ε)2

α∗ = σ(Ge, de) · de + σ(G∗, ε) · ε

where σ describes the frequency with which each of the two narrative-policy

pairs prevail. In the ε→ 0 limit, the solution is
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de =

√(
δ

1− δ

)2
+ 2δ − δ

1− δ

α∗ =
1

2
de

σ(Ge, de) =
1

2

Thus, in equilibrium the rational and easy-fix narratives prevail with equal

frequency.

This result uncovers a subtle interplay between rational and easy-fix nar-

ratives. The rational narrative acknowledges that a cannot influence the root

cause of y. Therefore, it cannot offer the illusion of a “happy ending”; the

only consolation it offers is a justification for taking the costless, ideal policy

ε. In contrast, the easy-fix narrative misinterprets the correlation between

s and y as a causal effect and therefore conveys an illusion that departing

from the ideal policy can improve y. Yet the easy-fix narrative feeds off the

rational narrative, and needs it as a foil. Without the rational narrative, α∗

would coincide with the easy-fix narrative’s endorsed policy, thus robbing it

of the ability to convey false hope. The narrative’s appeal originates from

the departure of its accompanying policy from the status quo α∗. For this to

happen, the rational narrative must belong to the support of the equilibrium

distribution. In other words, demagoguery needs the rational narrative as

a rival; it can only thrive if public opinion gives some room to the rational

narrative.

Another insight concerns comparative statics with respect to δ. One

might think that demagogues would flourish when underlying objective prospects

are dire. However, as we can see, the popularity of the easy-fix narrative is 1
2
,

independently of δ. In addition, the departure of de from the ideal policy is

not monotone with respect to δ. Instead, de (and consequently α∗) is hump-

shaped with respect to δ (attaining a maximum at δ ≈ 0.32). The reason is

that the easy-fix narrative’s belief distortion arises from misattributing the

fluctuations in y. The narrative’s ability to instill a false hope hinges on
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having enough historical variation in y. An increase in δ in its low region

increases the variability of y, and therefore leaves more room for the easy-fix

narrative to stoke false hope by attributing this variation in y to the wrong

cause. Thus, the effect of demagoguery can actually become stronger when

the underlying situation is better.

3 The Model

Let X = X1 × · · · ×Xm, where m > 2 and Xi = {0, 1} for each i = 1, ...,m.

For every N ⊆ {1, ...,m}, denote XN = ×i∈NXi. For any x ∈ X, the

components x1 and xm - also denoted a and y - are referred to as the action

and the consequence. Let p ∈ ∆(X) be an objective probability distribution

with full support. Denote p(a = 1) = α and p(y = 1) = µ. We interpret α as

a historical, long-run action frequency and endogenize it later in this section.

The exogenous components of p are given by the collection of conditional

probabilities (p(x2, ..., xm | a)).

A directed acyclic graph (DAG) is a pair G = (N,R), where N ⊆
{1, ...,m} is a set of nodes and R ⊆ N ×N is a set of directed links. Acyclic-

ity means that the graph contains no directed path from a node to itself. We

use iRj or i → j to denote a directed link from the node i into the node j.

Abusing notation, let R(i) = {j ∈ N | jRi} be the set of “parents”of node i.
Following Pearl (2009), we interpret a DAG as a causal model, where the link

i→ j means that xi is perceived as an immediate cause of xj. Directedness

and acyclicity of G are consistent with basic intuitions regarding causality.

The causal model is agnostic about the sign or magnitude of causal effects.

Let G be a collection of DAGs. We refer to an element in G as a narrative.
Every G ∈ G satisfies the following restrictions. First, {1,m} ⊆ N - i.e.,

all feasible narratives involve actions and consequences. Second, |N | ≤ n,

where n ∈ {2, ...,m} is an exogenously given constant that represents an
upper bound on narrative complexity. Third, 1 is an ancestral node. This

restriction means that actions have no prior causes. We relax this restriction

in Section 5. In applications, we will impose additional restrictions on G
because certain causal models are implausible in the relevant context (e.g.
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assuming that tariff policy has no causal effect on imports).

From narratives to beliefs

Given an objective distribution p, a narrativeG = (N,R) induces a subjective

belief over XN , defined as follows:

pG(xN) =
∏
i∈N

p(xi | xR(i)) (4)

The full-support assumption ensures that all the terms in this factorization

formula are well-defined.6

The conditional distribution of xm given x1 induced by pG is computed

in the usual way. It has a simple expression because 1 is an ancestral node:

pG(xm | x1) =
∑

xN−{1,m}

 ∏
i∈N−{1}

p(xi | xR(i))

 (5)

The fact that 1 is ancestral also ensures that this conditional distribution

has a natural interpretation as a perceived causal effect of x1 on xm.

For illustration, when n = m = 4 and the narrative isG : 1→ 3→ 4← 2,

pG(x1, x2, x3, x4) = p(x1)p(x2)p(x3 | x1)p(x4 | x2, x3)

and

pG(x4 | x1) =
∑
x2,x3

p(x2)p(x3 | x1)p(x4 | x2, x3)

The induced marginal distribution over consequences is

pG(xm) =
∑

x1,...,xm−1

pG(x1, ..., xm) (6)

Formula (4) is the standard Bayesian-network factorization formula (see

Spiegler (2016) and the references therein). Its interpretation in the current

context is as follows. A narrative selects up to n − 2 variables (other than

6When R(i) = ∅, p(xi | xR(i)) = p(xi) - i.e., an ancestral node enters the formula with
its marginal probability.

14



the action and the consequence) and incorporates them into a causal story.

This is akin to a novelist who conjures up a collection of events, and then

organizes their unfolding according to a plot. The narrative generates a

subjective belief regarding the mapping from actions to consequences, by

drawing the audience’s attention to particular correlations (those deemed

relevant by the causal model) and combining them in accordance with the

causal model. Each term in the factorization (4) is correctly extracted from

the objective distribution p. It is the way the terms are combined that may

lead to distorted beliefs.

Policies and anticipatory utility

A policy d ∈ [ε, 1 − ε] is a proposed frequency of playing the action a =

1, where ε > 0 is arbitrarily small.7 A representative agent has a utility

function u(y, d) = y − C(d − d∗), where d∗ is the agent’s ideal policy, and

C is a symmetric, twice-differentiable and convex cost function that satisfies

C(0) = 0. Thus, y = 1 is the agent’s desirable outcome, and C represents

the intrinsic disutility he experiences when deviating from his ideal policy.

Given p, a narrative-policy pair (G, d) induces gross anticipatory utility

V (G, d;α) = d · pG(y = 1 | a = 1) + (1− d) · pG(y = 1 | a = 0) (7)

This is simply the subjective probability of the good outcome y = 1 under

the policy d, according to pG. The agent’s net anticipatory utility from the

narrative-policy pair (G, d) given p is

U(G, d;α) = V (G, d;α)− C(d− d∗) (8)

The notation V (R, d;α) highlights a crucial feature, which was illustrated

in Section 2: a change in α (namely the marginal of p over a) can alter

pG(y | a), and therefore V (G, d;α). This would be impossible under rational

expectations, as p(y | a) is invariant to α by definition.

Since the only payoff-relevant variables are a and y, variables that are

7We define a policy as a mixture over actions rather than identifying it with a, in order
to prevent certain interesting effects from being obscured or trivialized.
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perceived as consequences of y can be safely ignored - dropping them from

G will not change pG(y | a). Therefore, from now on we will assume that y

is a terminal node in any G ∈ G. This entails no loss of generality.

No status-quo distortion

Recall that we require a to be an ancestral node in G. It immediately follows

from (4) that pG(a = 1) = α, and therefore

V (G,α;α) = pG(a = 1) · pG(y = 1 | a = 1) + pG(a = 0) · pG(y = 1 | a = 0)

= pG(y = 1) (9)

In other words, the gross anticipatory utility from a “status quo” policy

that mimics the objective long-run action frequencies is equal to the ex-ante

probability of a good outcome implied by pG.

Definition 1 (No status-quo distortion) A DAG G satisfies No-Status-

Quo-Distortion (NSQD) with respect to α if V (G,α;α) = µ.

Viewed formally, NSQD is the familiar Bayes plausibility condition: the

expected posterior distribution over y should coincide with its marginal dis-

tribution. In the present context, it can be interpreted as follows. When

considering the narrative G, the public may contemplate its implications

when coupled with the status-quo policy α. If V (G,α;α) 6= µ, it is as if the

narrative makes an absurd statement: “Let us keep doing what we have done

so far, and the outcome will be different”. NSQD rules out such narratives.

It allows narratives to make false promises about counterfactual policies, but

it does not allow them to distort the status quo.

By (9), NSQD is equivalent to requiring pG(y = 1) = µ. This enables

a more direct interpretation of NSQD as an empirical-consistency criterion

that constrains narratives’ability to delude the public: prevailing narratives

must not induce beliefs that distort the steady-state distribution over conse-

quences. The justification is that while testing correlations between variables

is a diffi cult task for the lay public, monitoring the long-run behavior of the
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target variable y is relatively easy. Therefore, it would be relatively easy to

discredit a narrative G that induces pG(y = 1) 6= µ.

Equilibrium

The model’s exogenous components are the conditional distribution (p(x2, ..., xm |
x1)), the set of feasible narratives G and the cost function C. That is, when
a narrator constructs a narrative G, he can only choose among the DAGs

in G, and the belief (pG(xm | x1)) that his narrative induces (as computed
according to (5)) is constrained by the distribution (p(x2, ..., xm | x1)).
For any probability distribution σ over narrative-policy pairs (G, d), de-

note

α(σ) =
∑
(G,d)

σ(G, d) · d

In other words, α(σ) is the overall probability of a = 1 implied by the mar-

ginal of σ over policies.

Definition 2 A probability distribution σ over narrative-policy pairs (G, d)

constitutes an equilibrium if any (G, d) ∈ Supp(σ) maximizes U(G, d;α(σ))

subject to the constraint that G satisfies NSQD with respect to α(σ).

This solution concept captures a steady state in the battle over pub-

lic opinion. It requires that prevailing narrative-policy pairs are those that

maximize the representative agent’s net anticipatory utility, subject to the

NSQD constraint. This captures the idea that voters do not adjudicate be-

tween narratives using “scientific” methods; rather, they are attracted to

narratives with a “happy ending”. When faced with contradictory causal

models, the public behaves as if it believes, paraphrasing George Box’s fa-

mous quote, that “all models are wrong, but some are hopeful”.8

In Definition 2, the public’s anticipatory utility is evaluated against α(σ),

the action frequency that is induced by the marginal of σ over policies (the

8Dahlstrom (2013) writes that “narratives can also perpetuate misinforma-
tion...accepted narratives are trusted so much that individuals rarely allow evidence to
contradict the narrative; evidence is altered to fit their narratives.”McComas and Shana-
han (1999) and Szostek (2018) also argue that people’s attachment to a particular narra-
tives is not necessarily based on scientific scrutiny.
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restriction that d ∈ (0, 1) ensures that α is interior, too). This condition

aims to capture a dynamic process behind our notion of equilibrium, as

illustrated in Section 2. At any point in time, a particular policy rises to

dominance because its accompanying narrative appeals to the public. Over

time, as the long-run action frequency gravitates toward the dominant policy,

the anticipatory payoff from various narrative-policy pairs can change. As

a result, a different narrative-policy pair can become dominant. While σ

describes the long-run frequencies with which different narrative-policy pairs

prevail, α(σ) is the long-run average action that results from the periodic

swings between dominant narrative-policy pairs. In Section 4, we will provide

a local-stability result that further substantiates this interpretation.

An alternative, purely static interpretation views the representative agent

as a unit mass of identical voters, each of whom adopts one narrative-policy

pair. According to this “cross-sectional”interpretation, σ(G, d) describes the

popularity of (G, d) - namely, the fraction of voters who adopt it. One of the

voters is drawn at random from σ and implements his favored policy. The

resulting average action is precisely α(σ).

The following is a simple rational-expectations benchmark. Suppose that

G consists of a single narrative G : a → y. Then, pG(y | a) ≡ p(y | a).

Any equilibrium σ will assign probability one to policies d that maximize

d · p(y = 1 | a = 1) + (1 − d) · p(y = 1 | a = 0) − C(d − d∗). When C is

strictly convex, the equilibrium is unique. From now on, we depart from this

benchmark and assume that the model’s primitives are minimally rich in the

following sense.

Definition 3 The pair (p,G) is non-null if there exist G,G′ ∈ G such that
pG(y | a) is non-constant in a and pG′(y | a) = µ for all a.

Thus, the set of feasible narratives is rich enough to enable a belief that

actions can affect consequences, as well as a belief that the distribution of

consequences is independent of actions. For instance, if G contains a DAG in
which a and y are both ancestral nodes, as well as a DAG a→ xk → y such

that xk is correlated with both a and y, then G is non-null. All the results
in the paper take it for granted that (p,G) is non-null.
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Proposition 1 An equilibrium exists.

The proof of this result involves constructing an auxiliary game, such that

existence of Nash equilibrium in this game is equivalent to existence of our

notion of equilibrium.

Comment: Perfect DAGs and NSQD

In certain cases, the DAG’s structure alone ensures NSQD. A DAG (N,R)

is perfect if whenever iRk and jRk for some i, j, k ∈ N , it is the case that
iRj or jRi. Thus, in a perfect DAG, if two variables are perceived to be

direct causes of a third variable, there must be a perceived direct causal

link between them. E.g., 1→ 2→ 3 is perfect (because the condition holds

vacuously), whereas 1→ 3← 2 is imperfect. Perfection is a familiar property

in the Bayesian-networks literature. In our context, the crucial property of

perfection is its relation to NSQD. If G is perfect, then V (G,α;α) = µ

for every objective distribution p with any given α, µ. Conversely, if G is

imperfect, we can find objective distributions for which NSQD fails. This

result is stated and proved in Spiegler (2018) in a different context. Thus,

from now on, we only need to check NSQD for imperfect DAGs.

3.1 An Example: Foreign-Policy Narratives

When different conflicting narratives vie for public support several interesting

questions arise. Does the bias of a policy (relative to the status-quo policy α)

dictate the shape of the narrative that will carry it? Can different false nar-

ratives coexist in a steady state? Can we account for polarization of political

beliefs as a result of competing narratives? The following simple example

illustrates the potential of our framework to address these questions.

Let m = n = 3. The three variables are as follows. The action a repre-

sents the attitude toward a rival country having a hostile regime, where a = 1

(0) denotes a hawkish (dovish) attitude. The consequence y represents the

hostile regime’s strength, where y = 1 (0) indicates a weak (strong) regime.

The third variable, denoted s, represents nationalistic sentiments in the other

country, where s = 1 (0) indicates strong (weak) nationalism.
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The exogenous aspects of the objective distribution p are as follows. First,

p(y = 1) = 1
2
, regardless of the chosen action a. That is, foreign policy has

no effect on regime strength. Second, p(s = 1 | a, y) = (a + 1− y)/2. Thus,

nationalism is positively correlated with both hawkish policy and regime

strength. However, these two correlations have different causal meaning.

The correlation between a and s is causal: hawkish (dovish) policy tends

to strengthen (weaken) nationalism in the other country. In contrast, the

correlation between s and y is not causal; rather, it is due to confounding by

unmodeled exogenous factors.

The set G consists of all DAGs that include a (as an ancestral node) and
y. The set is classified as follows: the lever narrative GL : a → s → y; the

threat/opportunity narrative GO : a→ y ← s; and all remaining narratives,

which can be shown to induce the rational-expectations belief pG(y = 1 |
a) = 1

2
for all a. Finally, the parameter ε that defines D is vanishingly small.

The cost function is C ≡ 0, hence the value of d∗ is immaterial.

Claim 1 There is a unique equilibrium σ: Supp(σ∗) = {(GL, ε), (GO, 1−ε)},
and σ(GO, 1− ε) ≈ 0.57.

This example has a number of noteworthy features.

Coupling of narratives and policies

In this example, s is the only variable (other than a and y) that narrators can

weave into their stories. However, its location in the narrative turns out to

determine the endorsed policy. The narrative that sustains a hawkish policy

treats s as an exogenous factor, whereas the narrative that sustains a dovish

policy treats s as a lever.

The reason that GL promotes dovish policies is that a and s are positively

correlated whereas s and y are negatively correlated. The lever narrative

combines these correlations in a causal chain a → s → y. As a result, GL

(falsely) predicts a negative indirect causal effect of a on y.

The intuition for why GO is coupled with a hawkish policy is subtler.

The specification of p(s | a, y) means that s is a (stochastic) function of the

difference a − y. This means that for a given s, an increase in a implies
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an increase in the conditional probability that y = 1. In reality, this effect

is purely diagnostic, yet GO treats it as causal. Moreover, GO regards the

distribution of s as independent of a. It follows that GO (falsely) predicts a

positive causal effect of a on y.

Multiple prevailing narratives

As in the example of Section 2, the equilibrium distribution assigns weight

to two policies. The “cross-sectional”interpretation of this effect is political

polarization: two divergent narrative-policy pairs dominate public opinion.

As in Section 2, the dynamic interpretation of equilibrium can be backed

by an explicit local stability argument, thanks to a “diminishing returns”

property: V (GL, ε;α) is increasing in α, whereas V (GO, 1−ε;α) is decreasing

in α. That is, each narrative’s ability to delude the public diminishes as the

policy it endorses gets implemented more frequently. If we perturb α above

its equilibrium level (i.e., increase the frequency of a = 1), (GL, ε) becomes

more appealing than (GO, 1− ε), and therefore the prevailing policy will be
dovish for some time. This pushes α back toward its original level. A similar

argument applies to downward perturbation of α.

Hawkish bias

The example treats the two actions symmetrically: p(s | a = 1, y) ≡ p(s |
a = 0, y) and the agent has no intrinsic preference over policies. Nevertheless,

the equilibrium action frequency is biased to the right. The reason is that

GO induces a false correlation pGO(y = 1 | a = 1)− pGO(y = 1 | a = 0) = 1
3
,

which is larger in absolute terms than the correlation −1/((1 + 2α)(3− 2α))

induced by GL. At α = 1
2
, this gives GO an advantage over GL in terms

of their induced anticipatory utility. The “diminishing returns” property

described above means that to equalize the narratives’anticipatory utility,

α has to be greater than 1
2
.

Comment: Mutual narrative refutation

Our representative agent does not reason “scientifically” about conflicting

narratives. He does not actively seek correlational data to test narratives.

Instead, he allows “narrators” to determine the data he pays attention to.

Thus, GL alerts him to the conditional distributions (p(s | a)) and (p(y | s)),
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whereas GO alerts him to (p(s)) and (p(y | a, s)). The data that one narrative
invokes also manages to refute the competing narrative. The distribution

(p(s | a)) referred to by GL shows that s and a are correlated, contra GO.

Likewise, the distribution (p(y | a, s)) referred to by GO demonstrates that y

and a are correlated conditional on s, contra GL. How would our agent react

if this mutual refutation were pointed out to him? A rational reaction would

be to distrust all narratives and develop a more “scientific”belief-formation

method. Yet an arguably more realistic reaction would be to shrug, conclude

that “all models are wrong”and adopt the more hopeful one - especially in

the political context, where the agent has virtually no “skin in the game”.9

4 Analysis

The illustrative examples raise the question of whether policy divergence is

an inherent feature of equilibrium. Our first result answers in the affi rmative.

Throughout the section, we assume that C is strictly convex. While this is

not a necessary assumption, it does rule out uninteresting knife-edge cases.

Proposition 2 Suppose C is strictly convex. Then, any equilibrium assigns

positive probability to exactly two policies, dr ≥ d∗ and dl ≤ d∗.

Thus, the support of the equilibrium policy distribution consists of two

elements that lie (weakly) on different sides of d∗. The fundamental insight is

that under the NSQD constraint, narratives cannot convey hopeful illusions

unless they are coupled with counterfactual policies. For this to happen,

these policies must depart from the status-quo policy α(σ).

Unlike other results in this paper, the proof does not make explicit use

of the DAG formalism. Rather, it relies on non-nullness and the NSQD con-

straint. NSQD implies that if the equilibrium distribution assigns probability

9Consider a modified example that replaces s with two distinct variables with the
same conditional distribution. The formal analysis would be the same. However, the two
conflicting narratives can invoke different variables, such that the mutual refutation would
be infeasible.
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one to a single policy d, prevailing narratives cannot distort the policy’s con-

sequences. Non-nullness implies that some other narrative-policy pair could

then invade and generate higher anticipatory utility (e.g., if d 6= d∗, a “nar-

rator” can promote the ideal policy d∗ with a “denialist” narrative that a

has no effect on y). This establishes that there must be multiple prevailing

policies. But why exactly two? By NSQD, narratives that maximize antici-

patory utility only depend on whether d is above or below α(σ). This means

that the indirect gross anticipatory utility is piecewise-linear with respect to

d. Strict convexity of C then implies a unique optimal policy on each side of

α(σ).

Remark 1 Proposition 2 allows dr or dl to coincide with d∗. Slight modi-
fications of non-nullness rule out this possibility. For instance, suppose that

d∗ > ε and that G includes two DAGs G and G′, such that pG(y | a) and

pG′(y | a) are strictly increasing and strictly decreasing in a, respectively.

Then, dl < d∗ < dr.

In Section 2, we provided a dynamic story that underlies our notion of

equilibrium. We now present a formal local-stability result that further sub-

stantiates this interpretation.

Definition 4 An equilibrium σ is locally stable if there is a neighborhood

of α(σ), such that for every α in the neighborhood and every (G, d) that

maximizes U(G, d;α), sign(α− α(σ)) · sign(d− α) < 0.

Local stability of an equilibrium σ means that if α is perturbed to one

side of α(σ), all narrative-policy pairs that prevail under the perturbed α

push back toward α(σ). The examples of Sections 2 and 3.1 both exhibited

this local stability property.

Proposition 3 Suppose C is strictly convex. Suppose further that for every

G ∈ G and d ∈ [ε, 1 − ε], V (G, d | α) is monotone in α. Then, there is an

essentially unique equilibrium, which is also locally stable.10

10By essential uniqueness, we mean that the distribution over ((pG(y | a)), d) is unique.
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Thus, when V is monotone in α, the dynamic backstory for our equi-

librium concept is well-founded. Although the definition of local stability

focuses on the dynamics of α, what ensures that every U -maximizing pair

(G, d) under the perturbed α pushes it back toward α(σ) is a combination

of two factors: the monotonicity of V , and the equilibrium property that

all (G, d) in the support of σ maximize U under α(σ). Note that thanks

to NSQD, monotonicity is in the direction that ensures the “diminishing

returns”property highlighted in Section 3.1: when a prevailing pair (G, d)

satisfies d > α(σ) (d < α(σ)) V (G, ·;α) will decrease (increase) in α. A

remaining open problem is whether all DAGs satisfy this monotonicity prop-

erty.

4.1 Short Narratives

In this sub-section we characterize equilibria when narrators can use at most

one variable in addition to a and y (i.e., n = 3). We focus on the case in which

a and y are objectively independent. In this setting, the only narratives that

can generate a non-constant pG(y | a) are the lever and threat/opportunity

narratives. Our objective is to examine which of the two narratives will

prevail, and which auxiliary variables they will employ.

For this purpose, we assume that m � n and the supply of potential

auxiliary variables (identified with their distribution conditional on a, y) is

rich, such that narrators can select the third variable in their narrative from

an “ocean”of potential variables. To introduce our notion of richness, let z

be an arbitrary binary variable, and define Q∗ to be the set of all conditional

distributions (p(z | a, y)) for which p(z | a)p(z | y) = 0 for some a, y, z.

That is, a conditional distribution in Q∗ allows a particular value of a or a

particular value of y to pin down deterministically the value of z. Finally, two

sets of conditional distributions are close if the Hausdorff distance between

any pair of elements from the two respective sets is below some arbitrarily

small threshold.

Definition 5 Let m � n = 3. An objective distribution p satisfying a ⊥ y

is Q∗-rich if {(p(xi = 1 | a, y))}i=2,...,m−1 and Q∗ are close.
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Q∗-richness says that the set of conditional distributions (p(z | a, y)) that

one can simulate by selecting one auxiliary variable approximately coincides

with Q∗. We impose this domain restriction because on the one hand it

is relatively weak (thus allowing for a large supply of potential auxiliary

variables), yet on the other hand it is tractable.11

Four particular elements in Q∗ will play a special role in our character-

ization. These are degenerate conditional distributions for which p(z = 1 |
a, y) ∈ {0, 1} for every a, y. Specifically, define

q∧1 : z = 1(a = 1 and y = 1)

q∨1 : z = 1(a = 1 or y = 1)

q∧0 : z = 1(a = 0 and y = 1)

q∨0 : z = 1(a = 0 or y = 1)

Proposition 4 Suppose d∗ > ε. Then, for a generic Q∗-rich distribution p,

there is an essentially unique equilibrium σ:

(i) The policy dr > α is accompanied by a lever narrative a→ xr → y, where

(p(xr | a, y)) is close to q∧1 or q
∨
1 .

(ii) The policy dl < α is accompanied by a lever narrative a→ xl → y, where

(p(xl | a, y)) is close to q∧0 or q
∨
0 .

Thus, for generic Q∗-rich distributions, lever narratives prevail. The rea-

son is that narratives that induce rational expectations generate lower an-

ticipatory payoff, whereas threat/opportunity narratives generically violate

NSQD (the foreign policy example of Section 3.1 was knife-edged in this

regard). The lever narratives employ degenerate auxiliary variables. The

following result completes the characterization for low C, ε.

Remark 2 Let C and ε be vanishingly small. Then, the equilibrium σ sat-

isfies:

(i) α(σ) = 1
2
.

11Numerical simulations suggest that the results of this sub-section will continue to hold
if we replace Q∗ with the set of all conditional distributions (p(z | a, y)).
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(ii) If µ < 1
2
, then (p(xr | a, y)) ≈ q∨1 and (p(xl | a, y)) ≈ q∨0 .

(ii) If µ > 1
2
, then (p(xr | a, y)) ≈ q∧1 and (p(xl | a, y)) ≈ q∧0 .

For real-life examples of lever narratives that are captured by this char-

acterization, recall the US trade policy debate from the Introduction. The

lever narrative that sustains a policy with a protectionist bias (relative to

the agent’s ideal point) will involve a variable like “imports from China”,

because low imports are associated with trade restrictions as well as high

employment in the local manufacturing sector. The narrative is false if the

latter correlation is not causal but, say, due to a confounding factor (such as

exogenous technology changes that affect outsourcing of production). Like-

wise, the lever narrative that sustains a trade policy with a liberalized bias

will select a variable like “industrial exports”.

5 State-Dependent Narrative Selection

So far, we have assumed that narrative-policy pairs are evaluated without

conditioning on any variable. However, the appeal of a given narrative often

varies with changing circumstances. In this section, we extend the definition

of equilibrium in this direction and illustrate the extended concept.

Recall the collection of variables x1, ..., xm, where x1 (also denoted a) is

the action and xm (also denoted y) is the consequence. Letm ≥ 3 and assume

that the variable x2 (also denoted θ) is realized and publicly observed before

the narrative-policy pair is evaluated. We refer to θ as a “state variable”.

For every θ, define αθ = p(a = 1 | θ), and let σθ denote a distribution over
narrative-policy pairs (G, d) conditional on θ. Denote α = (αθ)θ and σ =

(σθ)θ. For any σ, we denote αθ(σ) =
∑

(G,d) σθ(G, d) · d and α(σ) = (αθ(σ))θ.

Given a DAG G and an objective distribution p, the subjective belief pG
is defined as before, and the subjective conditional distribution pG(y | a, θ)
is defined as usual. Define the gross conditional anticipatory utility

V (G, d;α | θ) = d · pR(y = 1 | θ, a = 1) + (1− d) · pR(y = 1 | θ, a = 0)
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The agent’s net anticipatory utility is U(G, d;α | θ) = V (G, d;α | θ)−C(d−
d∗).

In this context, we will say that G satisfies NSQD with respect to α if∑
θ

p(θ)V (G, d;α(σ) | θ) = µ

Definition 6 The conditional distribution σ is an equilibrium if, for every

θ and every (G′, d′) ∈ Supp(σθ), (G′, d′) ∈ arg max(G,d) U(G, d;α(σ) | θ)
subject to the constraint that G satisfies NSQD with respect to α(σ).

At first glance, this may seem like an uninteresting state-by-state exten-

sion of our equilibrium concept. However, note that the NSQD constraint

is global. In addition, depending on how a narrative treats θ, the objective

distribution of certain variables at one value of θ can influence their subjec-

tive distribution conditional on another value of θ. This externality is what

makes the extension interesting, as the following example demonstrates.

An example: Denialism and exaggeration

Let m = n = 3, where the three variables are the action a, the consequence y

and the state variable θ. Let p(θ = 1) = δ and p(y = 1 | a, θ) = 1
2
(a+ θ). Let

d∗ = ε, where ε is arbitrarily small. Assume C is strictly convex and steep

enough such that C ′(1) > 1. Because p(y = 1 | a, θ) is additively separable,
the optimal policy under rational expectations is dRE = arg maxd(

1
2
d−C(d)),

independently of θ. By the assumptions on C, dRE is interior and given by

C ′(dRE) = 1
2
.

Let G be the set of all DAGs with a direct link θ → a. The interpretation

is that the representative agent is aware that actions are taken in response to

θ; a plausible narrative would incorporate this manifest causal relation. As

before, we can assume that y is a terminal node without loss of generality.

Then, G consists of the following four DAGs: Gd : a ← θ → y; Ge : θ →
a → y; the DAG Gn that removes the link a → y from Ge; and the fully

connected DAG GRE that adds the link θ → y to Ge. The latter is the only

DAG in G that is consistent with p, because all the others rule out the direct
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effect of a or θ on y. All DAGs in G are perfect, hence we can take NSQD
for granted.

One concrete story for this example is an environmental-policy debate

over the management of a natural resource. In this context, θ represents

exogenous fluctuations in the availability of this resource, y represents the

resource’s net availability, and a represents preservation policy, where a = 1

stands for costly preservation measures (hence the assumption that d∗ = ε).

Accordingly, Gd is a “denialist”narrative that neglects the role of policy and

attributes the consequence entirely to exogenous forces. In contrast, Ge is

an “exaggerationist”narrative that effectively says “it is all up to us”. The

DAG Gn is a “neutral”narrative because it does not attribute the outcome

to any of the other variables.

Claim 2 There is a unique equilibrium, which is characterized as follows:
(i) Supp(σ1) = {(GRE, dRE), (Gd, ε)}.
(ii) Supp(σ0) = {(Ge, dRE), (Gn, ε)}.
(iii) α1(σ) = α0(σ) = dRE − 2C(dRE).

Thus, different states give rise to the same mixture between policies, but

these policies are promoted by different sets of narratives. The rational and

denialist narratives prevail in the good state θ = 1, whereas the exaggera-

tionist and neutral narratives prevail in the bad state θ = 0. In each case,

narratives that neglect the role of a legitimize the representative agent’s desire

to eschew hard trade-offs, and therefore induce his ideal policy d∗ = ε. And

the narratives that account for the role of a induce the rational-expectations

policy, even if they do not always give it the rational-expectations rationale.

The result that the mixture over policies is state-independent mirrors

the rational-expectations benchmark. However, the reasoning behind it is

subtler. The narratives Ge and Gn effectively fail to condition anticipatory

utility on θ. As a result, there is an externality between the two states

that does not exist under rational expectations. In particular, α1 affects

the relative appeal of Ge and Gn in θ = 1, and therefore could potentially

affect α0. It is equilibrium reasoning that restores state-independent policy

28



mixtures. If α1 were higher (lower) than α0, this would make Ge more (less)

appealing, thus leading to a rise (drop) in α0.

6 Concluding Remarks

The model of competing narratives presented in this paper formalized intu-

itions regarding the role of narratives in the formation of political beliefs.

Our model was based on two main ideas.

What are narratives and how do they shape beliefs? In our formalism, narra-

tives are causal models that map actions into consequences. Different narra-

tives employ different intermediate variables and arrange them differently in

the causal scheme. Narratives shape beliefs by imposing a causal interpreta-

tion on long-run correlations. These beliefs are used to evaluate policies.

How does the public select between competing narratives? Our behavioral

assumption was that in the presence of conflicting narrative-policy pairs, the

public (a representative agent in this paper) selects between them accord-

ing to their induced anticipatory utility. This is consistent with the basic

intuition that people are drawn to stories with a “hopeful”message.

The main insights that emerged from our analysis of the model can be

summarized as follows. First, at least some prevailing narratives are mis-

specified causal models that “sell false hopes” regarding the consequences

of counterfactual policies. Second, multiplicity of dominant narrative-policy

pairs is an intrinsic property of long-run equilibrium in the “battle over pub-

lic opinion”. Indeed, in specific settings, we saw that growing popularity of

one policy weakens the appeal of its supporting narrative. This “diminish-

ing returns”aspect leads to additional properties of equilibrium (uniqueness,

dynamic stability) in these settings. Finally, we hope that our stylized ex-

amples gave a foretaste of the model’s ability to shed light on the popularity

of certain real-life political narratives and their implications for political out-

comes.

We close with a brief discussion of two variations on our equilibrium

concept.
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Relative anticipatory utility

Our narrative-selection assumption captured the idea that popular political

narratives convey a hopeful message. A different intuition regarding the

source of successful narratives is that they make the proposed policy look

good relative to some other policy (the status quo, or a policy proposed by

an opponent).

This intuition can be captured by simple variants on our equilibrium con-

cept. E.g., we can require every (G, d) in Supp(σ) to maximize U(G, d;α(σ))−
U(G,α(σ);α(σ)) - i.e., the public evaluates the proposed policy according to

its anticipatory utility relative to the status-quo policy. Similarly, we can

require every (G, d) in Supp(σ) to maximize U(G, d;α(σ)) − U(G, d′;α(σ))

for some (G′, d′) ∈ Supp(σ) - i.e., the public evaluates the proposed policy

according to its anticipatory utility relative to a policy promoted by some

competing “narrator”. In both cases, the anticipatory utility is calculated

according to the narrative G that carries the proposed policy d.

Simple algebra establishes that for any (G, d) ∈ Supp(σ), G maximizes

(minimizes) pG(y = 1 | a = 1) − pG(y = 1 | a = 0) if d is above (below) the

reference policy. In turn, the NSQD constraint ensures that this is equivalent

to maximizing pG(y = 1 | a = 1) (pG(y = 1 | a = 0)). The implication is

that the equilibrium characterization is qualitatively the same as in our main

model. The set of prevailing narratives is the same, and the only difference

may be in the exact location of the narratives dh and dl (because the trade-off

between the gross anticipatory utility term and the cost C is different).

Strengthening NSQD

Our equilibrium concept requires that in σ, prevailing narratives satisfy

NSQD with respect to α(σ). However, if we commit to the dynamic-stability

interpretation of equilibrium, we may wish to strengthen the concept, such

that prevailing narratives satisfy NSQD also with respect to any α in a neigh-

borhood of α(σ). The reason is that if we perturb α from its equilibrium level,

we do not want the narratives that prevail in σ to be disqualified because

they fail to satisfy NSQD. In practice, all the results in this paper would

remain intact if we adopted this alternative definition of equilibrium.
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Appendix I: Proofs

Proof of Proposition 1
Consider an auxiliary two-player game. Player 1’s strategy space is D, and

α denotes an element in this space. Player 2’s strategy space is ∆(G × D),

and σ denotes an element in this space. The payoff of player 1 from the

strategy profile (α, σ) is −[α−
∑

G,d σ(G, d)d]2. The payoff of player 2 from

(α, σ) is equal to
∑

G,d σ(G, d)Ũ(G, d;α), where Ũ(G, d;α) = U(G, d;α) if

V (G,α;α) = µ and Ũ(G, d;α) = −∞ otherwise.

Note that
∑

G,d σ(G, d)d = α(σ) by definition. Therefore, when player

1 chooses α to best-reply to σ, we have α = α(σ). Non-nullness ensures

that G includes a DAG G∗ that induces V (G,α;α) = µ. It follows that

when player 2 chooses σ to best-reply to α, it maximizes U(G, d;α) subject

to V (G,α;α) = µ. Therefore, a Nash equilibrium in this auxiliary game is

equivalent to our notion of equilibrium.

Our objective is thus to establish existence of a Nash equilibrium (α, σ)

in this auxiliary game. Since pG is a continuous function of α, so is U . In

addition, the strategy spaces and payoff functions of the two players in the

auxiliary game satisfy standard conditions for the existence of Nash equilib-

rium. �
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Proof of Claim 1
We first derive pG(y | a) for every G ∈ G. Any G that induces pG(y = 1 |
a) = 1

2
for all a would generate U(G, d;α) = 1

2
for any d, α. Now consider

the narrative GO:

pGO(y = 1 | a) = p(s = 1)p(y = 1 | a, s = 1) + p(s = 0)p(y = 1 | a, s = 0)

Plugging our specification of p(a, y, s) = p(a)p(y)p(s | a, y), we obtain

p(s = 1) = α · 1

2
· 1 + (1− α) · 1

2
· 0 +

[
α · 1

2
+ (1− α) · 1

2

]
· 1

2
=

1

4
+
α

2

and

p(y = 1 | a = 1, s = 1) =
α · 1

2
· 1
2

α · 1
2
· 1
2

+ α · 1
2
· 1

=
1

3

p(y = 1 | a = 1, s = 0) =
α · 1

2
· 1
2

α · 1
2
· 1
2

+ α · 1
2
· 0

= 1

p(y = 1 | a = 0, s = 1) = 0

p(y = 1 | a = 0, s = 0) =
(1− α) · 1

2
· 1

(1− α) · 1
2
· 1 + (1− α) · 1

2
· 1
2

=
2

3

Therefore,

pGO(y = 1 | a = 1) =
5

6
− α

3

pGO(y = 1 | a = 0) =
1

2
− α

3

such that

V (GO, d;α) = d(
5

6
− α

3
) + (1− d)(

1

2
− α

3
)

Plugging d = α, we can confirm that V (GO, α;α) = 1
2
regardless of α.

Therefore, GO satisfies NSQD. Note that for any α, V (GO, d;α) is strictly

increasing in d. Therefore, if (GO, d) is in the support of the equilibrium, then

d = 1− ε. Since V (GO, 1− ε;α) ≈ 5
6
− α

3
> 1

2
for any α < 1, it follows that

no narrative that induces rational expectations can prevail in equilibrium.
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Next, consider the narrative GL:

pGL(y = 1 | a) = p(s = 1 | a)p(y = 1 | s = 1) + p(s = 0 | a)p(y = 1 | s = 0)

Plugging our specification of p, we obtain

p(s = 1 | a = 1) =
1

2
· 1

2
+

1

2
· 1 =

3

4

p(s = 1 | a = 0) =
1

2
· 0 +

1

2
· 1

2
=

1

4

and

p(y = 1 | s = 1) =
α
2
· 1
2

+ 1−α
2
· 0

1
4

+ α
2

=
α

1 + 2α

p(y = 1 | s = 0) =
α
2
· 1
2

+ 1−α
2
· 1

3
4
− α

2

=
2− α
3− 2α

Therefore,

pGL(y = 1 | a = 1) =
3

4
(

α

1 + 2α
) +

1

4
(

2− α
3− 2α

) =
1 + 6α− 4α2

2(1 + 2α)(3− 2α)

pGL(y = 1 | a = 0) =
1

4
(

α

1 + 2α
) +

3

4
(

2− α
3− 2α

) =
3 + 6α− 4α2

2(1 + 2α)(3− 2α)

such that

V (GL, d;α) = d · 1 + 6α− 4α2

2(1 + 2α)(3− 2α)
+ (1− d) · 3 + 6α− 4α2

2(1 + 2α)(3− 2α)
(10)

Because GL is perfect, it necessarily satisfies NSQD (as can be verified by

setting d = α in (10)). Note that for any α, V (GL, d;α) is strictly decreasing

in d. Therefore, if (GL, d) is in the support of the equilibrium, then d = ε.

We have seen that any narrative G 6= GO, GL cannot prevail in equilib-

rium. We now show that both GO and GL belong in the equilibrium support.

Assume the contrary, and suppose GO is the only narrative in the support.

Then, as shown above, it will be paired with the policy d = 1− ε, such that
α = 1 − ε. Since GO satisfies NSQD, V (GO, 1 − ε; 1 − ε) = 1

2
. But since
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V (GL, ε; 1− ε) ≈ 5
6
, (GO, 1− ε) does not maximize the agent’s anticipatory

payoff, a contradiction. Similarly, if GL is the only prevailing narrative, it

is paired with d = ε, such that α = ε and therefore V (GO, 1 − ε; ε) ≈ 5
6
,

reaching a similar contradiction.

Thus, Supp(σ) consists of exactly two narrative-policy pairs: (GL, ε) and

(GO, 1− ε). This means that V (GL, ε;α) = V (GO, 1− ε;α), which for ε→ 0

can be written as
3 + 6α− 4α2

2(1 + 2α)(3− 2α)
≈ 5

6
− α

3

This equation has a unique solution in [0, 1], α ≈ 0.57. Finally, note that in

the ε→ 0 limit, α = σ(GO, 1− ε).

Proof of Proposition 2
Fix an equilibrium σ. First, let us show that every (G, d) ∈ Supp(σ) induces

U(G, d;α(σ)) ≥ µ. Assume the contrary. By minimal richness, G includes
the DAG G∗ : a y. Note that pG(y | a) = µ for every a. It follows that the

narrative-policy pair (G∗, d∗) generates the net payoff U(G∗, d∗;α(σ)) = µ,

contradicting the first part of the definition of equilibrium.

Next, we establish that the support of σ must include at least two distinct

policies. Assume the contrary - i.e., the marginal of σ over d is degenerate.

Then by definition, it assigns probability one to the steady-state policy α(σ).

By NSQD, V (G,α(σ);α(σ)) = µ for every narrative G in the support of σ.

There are now two cases to consider.

Case 1: α(σ) 6= d∗. Any narrativeG in the support of σ delivers U(G,α(σ);α(σ)) =

µ − C(α(σ) − d∗). By assumption, C ′(0) = 0 and C ′′(0) > 0 such that

C(α(σ)− d∗) > 0. Therefore, U(G,α(σ);α(σ)) < µ, contradicting our previ-

ous step.

Case 2: α(σ) = d∗. Any narrativeG in the support of σ delivers U(G,α(σ);α(σ)) =

µ. By our assumption that (p,G) is non-null, G contains the DAG G∗∗ : a→
xi → y, where xi is correlated with both a and y according to p. Without

loss of generality, suppose p(xi = 1 | a = 1) > p(xi = 1 | a = 0) and

p(y = 1 | xi = 1) > p(y = 1 | xi = 0). Since G∗∗ is perfect, it satisfies

NSQD, such that U(G∗∗, α(σ);α(σ)) = µ. The derivative of V (G∗∗, d;α(σ))
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with respect to d is pG∗∗(y = 1 | a = 1)− pG∗∗(y = 1 | a = 0), which can be

written as

[p(xi = 1 | a = 1)− p(xi = 1 | a = 0)] [p(y = 1 | xi = 1)− p(y = 1 | xi = 0)]

By assumption, both terms in this product are non-zero, hence the derivative

of V (G∗∗, d;α(σ)) with respect to d is non-zero. Since C ′(0) = 0, it follows

that there is d 6= d∗ such that U(G∗∗, d;α(σ)) > µ, again contradicting the

first part in the definition of equilibrium.

We now show that the support cannot contain more than two policies.

By definition, any (G, d) ∈ Supp(σ) maximizes V (G, d;α(σ)) − C(d − d∗)

subject to the NSQD constraint V (G,α(σ);α(σ)) = µ. This means that we

can rewrite V (G, d;α(σ)) as follows:

V (G, d;α(σ)) =
d− α

1− α(σ)
· pG(y = 1 | a = 1) +

1− d
1− α(σ)

· µ (11)

= (1− d

α(σ)
) · pG(y = 1 | a = 0) +

d

α(σ)
· µ

It follows that the narratives that maximize U given (d, α(σ)) subject to

NSQD depend only on the ordinal ranking between d and α(σ). That is, for

every (G, d) ∈ Supp(σ) such that d ≥ α(σ), G maximizes pG(y = 1 | a = 1).

Likewise, for every (G, d) ∈ Supp(σ) such that d ≤ α(σ), G maximizes

pG(y = 1 | a = 0). Note that when d = α(σ), any G that satisfies NSQD

maximizes U .

This means that maxG V (G, d;α(σ)) is piecewise linear in d, having a

weakly positive slope in the range d ≥ α(σ) and a weakly negative slope in

the range d ≤ α(σ), where at least one of these slopes is non-zero. Because C

is strictly convex, it follows that there exist unique dr and dl that maximize

U in the ranges d ≥ α(σ) and d ≤ α(σ), respectively. It follows that there

are at most two policies in the support of the equilibrium distribution, and

that they lie (weakly) on different sides of α(σ).

It remains to establish that dr ≥ d∗ and dl ≤ d∗. We have already shown

that it cannot be the case that dr = dl = d∗. Assume dr and dl are (strictly)
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on the same side of d∗. Without loss of generality, let dr > dl > d∗. The

second part of the definition of equilibrium implies dl < α(σ) < dr. Since

dl < α(σ), we saw that if (G, dl) ∈ Supp(σ), then G maximizes pG(y =

1 | a = 0). Since d∗ < dl, it follows that the pair (G, d∗) would attain a

strictly higher U than (G, dl), contradicting the first part of the definition of

equilibrium. �

Proof of Proposition 3. By Propositions 1 and 2, an equilibrium σ exists.

Moreover, every equilibrium σ assigns positive probability to exactly two

policies that lie (weakly) on opposite sides of d∗.

As a preliminary step, let us show that for any equilibrium σ where

Supp(σ) = {(Gl, dl), (Gr, dr)}, V (Gr, d;α) is decreasing in α and V (Gl, d;α)

is increasing in α. By assumption, V is monotone in α. Suppose that

V (Gr, d;α) is increasing in α. By NSQD, V (Gr, dr; dr) = µ. Since dr > α(σ),

it follows that V (Gr, dr;α(σ)) < µ, contradicting our finding (at the be-

ginning of the proof of Proposition 2) that U(Gr, dr;α(σ)) ≥ µ. There-

fore, V (Gr, d;α) is decreasing in α. In the same manner, we can show that

V (Gl, d;α) is increasing in α.

Let us first establish essential uniqueness of equilibrium. Suppose there

are at least two equilibria σ and σ′, such that Supp(σ) = {(Gl, dl), (Gr, dr)}
and Supp(σ′) = {(G′l, d′l), (G′r, d′r)}. Without loss of generality, α(σ′) ≤ α(σ).

Assume α(σ′) = α(σ) = α. Then, from the proof of Proposition 2, both Gr

and G′r maximize pG(y = 1 | a = 1) given α. Likewise, both Gl and G′l
maximize pG(y = 1 | a = 0) given α. Furthermore, there exist unique d̂r
and d̂l that maximize U in the ranges d ≥ α and d ≤ α, respectively. This

has two implications. First, by NSQD, (pGr(y | a)) = (pG′r(y | a)) and

(pGl(y | a)) = (pG′l(y | a)). Second, dr = d′r and dl = d′l. This means that the

equilibrium is essentially unique.

Now assume α(σ′) < α(σ). By construction,

U(Gr, dr;α(σ)) = max
(G,d)|d>α(σ)

U(G, d;α(σ)) (12)

U(Gl, dl;α(σ)) = max
(G,d)|d<α(σ)

U(G, d;α(σ))
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and

U(Gr, dr;α(σ)) = U(Gl, dl;α(σ)) (13)

Since α(σ′) < α(σ), V (Gr, d;α) is decreasing in α and V (Gl, d;α) is increas-

ing in α, it follows that

max
(G,d)|d>α(σ′)

U(G, d;α(σ′)) > max
(G,d)|d<α(σ′)

U(G, d;α(σ′))

contradicting the assumption that σ′ is an equilibrium with Supp(σ′) =

{(G′l, d′l), (G′r, d′r)}.
We now turn to local stability. Consider an equilibrium σ with Supp(σ) =

{(Gl, dl), (Gr, dr)}, where dl < α(σ) < dr. Equalities (12)-(13) hold. Suppose

α > α(σ). Since V (Gr, d;α) is decreasing in α and V (Gl, d;α) is increasing

in α, it follows that

max
(G,d)|d>α

U(G, d;α) < max
(G,d)|d<α

U(G, d;α)

thus satisfying the condition for local stability. A similar argument applies

to the case of α < α(σ). �

Proof of Proposition 4
The assumption that p is Q∗-rich enables us to apply Remark 1: In any

equilibrium, the support of the marginal equilibrium distribution over policies

is {dl, dr}, where dl < d∗ < dr. Furthermore, the policies dr and dl are

accompanied by narratives Gr and Gl that maximize pG(y = 1 | a = 1) and

pG(y = 1 | a = 0), respectively.

The proof proceeds stepwise. We use the shorthand notation α = α(σ)

throughout.

Step 1: For any k = 2, ...,m− 1, the threat/opportunity DAG 1→ m← k

violates NSQD for almost all rich distributions p.

Proof : Let G : a → y ← z, where z ∈ {0, 1} and (p(z | a, y)) is a generic

element in Q∗. Since a is an ancestral node in G, we can substitute p(a) ≡
pG(a) (see Spiegler (2017)), such that the NSQD requirement can be written
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as ∑
a

pG(a)pG(y = 1 | a) = p(y = 1) = µ

Since the L.H.S of this equation is by definition pG(y = 1), it follows that

NSQD is equivalent to the requirement that pG does not distort the objective

marginal distribution of y. We can write the condition more explicitly:

∑
a

∑
z

p(a)

(∑
a′

∑
y′

p(a′)p(y′)p(z | a′, y′)
)

p(a)µp(z | a, y = 1)

p(a)
∑

y′′ p(y
′′)p(z | a, y′′) = µ

This expression can be simplified into

∑
a

p(a)
∑
z

p(z | a, y = 1)
∑

a′
∑

y′ p(a
′)p(y′)p(z | a′, y′)∑

y′′ p(y
′′)p(z | a, y′′) = 1

This is an equation in four variables (p(z = 1 | a, y)), where (p(a)) and

(p(y)) are given constants. We can multiply both sides of the equations by

the four terms (
∑

y′′ p(y
′′)p(z | a, y′′))a,z, and obtain a polynomial equation

in the four variables. The equation is non-tautological: it is violated when

z ≈ y + a(1− y).12 It is well-known that the Lebesgue measure of the set of

solutions of a non-tautological polynomial equation over [0, 1]n is zero (see

Caron and Traynor (2005)). This completes the proof. �

Thus, for generic Q∗-rich distributions p, the only DAGs G that can

be part of an equilibrium while inducing non-constant pG(y | a) are the

lever DAGs a → xi → y, where i = 2, ...,m − 1. The narratives that

accompany dr and dl both have this structure, and thus only differ in the

value of i. Q∗-richness means that the problem of finding the value of i for

12Suppose z is determined as follows: With probability 1− ρ, z = y+a(1− y), and with
probability ρ, z = 0. For ρ suffi ciently close to zero,∑

a

pG(a)pG(y = 1 | a) ≈ [1− α(1− µ)][α+ (1− α)µ] > µ
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Gr is approximated by the following problem:13

max
(p(z=1|a,y))a,y=0,1∈Q∗

∑
z=0,1

p(z | a = 1)p(y = 1 | z) (14)

=
∑
z

(∑
y′

p(y′)p(z | a = 1, y′)

)
µ
∑

a′ p(a
′)p(z | a′, y = 1)∑

y′′
∑

a′′ p(a
′′)p(y′′)p(z | a′′, y′′)

The problem for Gl is the same, except that we condition on a = 0 instead

of a = 1.

Step 2: The solution to (14) is

pG(y = 1 | a) = max

{
µ

µ+ p(a)(1− µ)
,
µ(2− p(a)− µ)

1− µp(a)

}
where the left and right arguments are attained at q∨a and q

∧
a , respectively.

The left argument is weakly higher than the right argument if and only if

p(a) + µ ≤ 1. Denote the solution by Ha(α).

Proof : See Appendix II. �

Step 3: The equilibrium is generically unique.

Proof : By Q∗-richness, pGr(y = 1 | a = 1) ≈ H1(α) and pGl(y = 1 | a =

0) ≈ H0(α). Use NSQD to define pGr(y = 1 | a = 0) and pGl(y = 1 | a = 1)

in terms of Ha(α), and obtain

V (Gr, d;α) ≈ µ ·max

{
d(1− µ) + µ

α(1− µ) + µ
,
d(1− µ) + 1− α
α(1− µ) + 1− α

}
V (Gl, d;α) ≈ µ ·max

{
(1− d)(1− µ) + µ

(1− α)(1− µ) + µ
,

(1− d)(1− µ) + α

(1− α)(1− µ) + α

}
Consider an equilibrium with some given α. By definition,

U(Gr, dr;α) = max
d>α

[V (Gr, d;α)− C(d− d∗)]

U(Gl, dl;α) = max
d<α

[V (Gl, d;α)− C(d− d∗)]

13This is only an approximation because we need to incorporate small perturbations to
the distribution of the lever variable if the solution to the maximization problem yields
distributions without full support for every realization of a and y.
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It is easy to verify that for any fixed d, V (Gr, d;α) is strictly decreasing with

α, whereas V (Gl, d;α) is strictly increasing with α. Consequently, the equa-

tion U(Gr, dr;α) = U(Gl, dl;α) that must hold in equilibrium cannot have

more than one solution α. Given α, the solution of Gr and Gl is generically

unique, and therefore V (Gr, d;α) and V (Gl, d;α) are also pinned down. As

a result, dr and dl are pinned down, which also pins down σ.14 �

Proof of Remark 2
When C and ε are vanishingly low, it must be the case that dr ≈ 1 and

dl ≈ 0, such that

max

{
2− µ− α

α(1− µ) + 1− α,
1

α(1− µ) + µ

}
≈ max

{
1− µ+ α

(1− α)(1− µ) + α
,

1

(1− α)(1− µ) + µ

}
The result follows by solving this equation. �

Proof of Claim 2
Let σ be an equilibrium, and use the shorthand notation αθ = αθ(σ). Let us

calculate pG(y = 1 | a, θ) for each of the four available narratives:

pGRE(y = 1 | a, θ) = p(y = 1 | a, θ) =
1

2
(a+ θ)

pGn(y = 1 | a, θ) = p(y = 1) =
1

2
[δ(1 + α1) + (1− δ)α0]

pGd(y = 1 | a, θ) = p(y = 1 | θ) =
1

2
(αθ + θ)

pGe(y = 1 | a, θ) = p(y = 1 | a) =
1

2
[a+ p(θ = 1 | a)]

14Here, genericity means that when p(a) + µ = 1, there are two lever variables that
maximize pG(y = 1|a = 1), z = ay and z = y + a(1 − y); and two lever variables that
maximize pG(y = 1|a = 0), x = y(1 − a) and x = y + (1 − y)(1 − a). For details, see
Appendix 2.
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where

p(θ = 1 | a = 1) =
δα1

δα1 + (1− δ)α0

p(θ = 1 | a = 0) =
δ(1− α1)

δ(1− α1) + (1− δ)(1− α0)

It follows that the net anticipatory utility induced by a policy d coupled

with any of the four narratives is:

U(GRE, d | θ) =
1

2
θ +

1

2
d− C(d)

U(Gn, d | θ) =
1

2
[δ(1 + α1) + (1− δ)α0]− C(d)

U(Gd, d | θ) =
1

2
(αθ + θ)− C(d)

U(Ge, d | θ) =
1

2
d− C(d) +

1

2
[

δα1d

δα1 + (1− δ)α0
+

δ(1− α1)(1− d)

δ(1− α1) + (1− δ)(1− α0)
]

The policy that maximizes net anticipatory utility under Gd or Gn is

d∗ = 0. Therefore, if any of these narratives prevails in some state, it must

be coupled with d = 0. Likewise, the policy that maximizes net anticipatory

utility under GRE is dRE. Therefore, if this narrative prevails in some state,

it must be coupled with dRE. As to the narrative Ge, the policy de that

maximizes net anticipatory utility under this narrative satisfies de > dRE

(de < dRE) whenever α1 > α0 (α1 < α0).

Note that it follows from C ′(1) > 1 that even under the most optimistic

belief that is induced by one of the narratives, the optimal policy would

always be strictly below 1. Hence, αθ < 1 for all θ.

Consider the realization θ = 1. Suppose α1 = 0. Then,

U(GRE, dRE | θ = 1) =
1

2
+ max

d
[
1

2
d− C(d)] >

1

2
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whereas

U(Gn, 0 | θ = 1) =
1

2
[δ + (1− δ)α0] <

1

2

U(Gd, 0 | θ = 1) =
1

2

In addition, for any d and for all α0,

1

2
d · (1− δ)(1− α0)

δ + (1− δ)(1− α0)
− C(d) +

1

2
· δ

δ + (1− δ)(1− α0)
<

1

2
d− C(d) +

1

2

which implies that U(Ge, de | θ = 1) < U(GRE, dRE | θ = 1). Therefore,

(GRE, dRE) must be the prevailing narrative-policy pair, contradicting the

assumption that α1 = 0.

It follows that α1 > 0. Since for any α0 and for any d,

δα1d

δα1 + (1− δ)α0
+

δ(1− α1)(1− d)

δ(1− α1) + (1− δ)(1− α0)
< 1 (15)

we have that U(Ge, d | θ = 1) < U(GRE, d | θ = 1), and hence, Ge cannot

be a prevailing narrative in θ = 1. Likewise, a simple calculation establishes

that U(Gd, 0 | θ = 1) > U(Gn, 0 | θ = 1). Therefore, Gn is not a prevailing

narrative in θ = 1.

It follows that the only narrative-policy pairs that can prevail in θ = 1

are (GRE, dRE) and (Gd, 0). Their induced net anticipatory utility is

U(GRE, dRE | θ = 1) =
1

2
(dRE + 1)− C(dRE)

U(Gd, 0 | θ = 1) =
1

2
(α1 + 1)

If Supp(σ1) = {(Gd, 0)}, then α1 = 0, which we have already ruled out.

Suppose Supp(σ1) = {(GRE, dRE)}. Then, α1 = dRE, in which case it is

obvious that U(GRE, dRE | θ = 1) < U(Gd, 0 | θ = 1), a contradiction.

The only remaining case is that Supp(σ1) = {(Gd, 0), (GRE, dRE)}. Then,
U(GRE, dRE | θ = 1) = U(Gd, 0 | θ = 1), which implies α1 = dRE − 2C(dRE).

The first-order-condition characterization of dRE and the strict convexity of
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C ensure that indeed, α1 ∈ (0, 1). This completes the characterization of σ1.

Note that it is independent of σ0.

Next, consider the realization θ = 0. For any d, the difference, U(Ge, d |
θ = 0) − U(GRE, d | θ = 0), is equal to half of the L.H.S. of (15), which

is positive since α1 > 0. Therefore, GRE cannot be a prevailing narrative

in θ = 0. Likewise, U(Gn, 0 | θ = 0) > U(Gd, 0 | θ = 0), and hence, Gd

cannot be a prevailing narrative in θ = 0. It follows that in θ = 0 the

only narrative-policy pairs that can prevail are (Ge, de) and (Gn, 0), where

de = arg maxd U(Ge, d | θ) (from the strict convexity of C, this function has

a unique maximum).

Let us guess an equilibrium in which α0 = α1. Then U(Ge, d | θ = 0) =
1
2
d− C(d) + 1

2
δ, and the policy that maximizes it is de = dRE. Thus,

U(Ge, de | θ = 0) =
1

2
dRE − C(dRE) +

1

2
δ =

1

2
α1 +

1

2
δ

U(Gn, 0 | θ = 0) =
1

2
[δ(1 + α1) + (1− δ)α1] =

1

2
α1 +

1

2
δ

which is consistent with α0 ∈ (0, 1).

We next show that there exists no equilibrium with α0 6= α1. Suppose

first that α1 > α0. Note that

max
d
U(Ge, d | θ = 0) ≥ U(Ge, α1 | θ = 0)

=
1

2
α1 +

1

2
δ

[
α21

δα1 + (1− δ)α0
+

(1− α1)2
1− δα1 − (1− δ)α0

]
We argue that if α0 6= α1 then

α21
δα1 + (1− δ)α0

+
(1− α1)2

1− δα1 − (1− δ)α0
> 1

A bit of algebra confirms that this inequality is satisfied if and only if (α1 −
α0)

2 > 0. Hence, when α0 6= α1,

max
d
U(Ge, d | θ = 0) ≥ U(Ge, α1 | θ = 0) >

1

2
α1 +

1

2
δ
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But when α0 < α1,

U(Gn, 0 | θ = 0) <
1

2
[δ(1 + α1) + (1− δ)α1] =

1

2
α1 +

1

2
δ

which implies that Supp(σ0) = {(Ge, de)}, and hence, α0 = de. But when

α1 > α0 we know that de > dRE = α1. This implies that α0 > α1, a contra-

diction.

Suppose instead that α0 > α1. If Supp(σ0) = {(Ge, de)}, then α0 = de <

dRE = α1, a contradiction. If Supp(σ0) = {(Gn, 0)}, then α0 = 0 < α1, a

contradiction. If Supp(σ0) = {(Ge, de), (Gn, 0)}, then α0 will be a convex
combination of de < α1 and dn = 0, which is strictly lower than α1. But this

contradicts our assumption that α0 > α1. �

Appendix II: Step 2 in Proof of Proposition 4

Let G be the lever DAG a → x → y. Denote pay ≡ p(x = 1 | a, y). Our

objective is to find the maximal values for pG(y = 1 | a = 1) and pG(y =

1 | a = 0) subject to the constraint that either pa∗1 = pa∗0 ∈ {0, 1} for some
a∗, or p1,y∗ = p0,y∗ ∈ {0, 1} for some y∗. We use the shorthand notation
α = α(σ).

Recall that

pG(y = 1|a = 1) = p(x = 1|a = 1)p(y = 1|x = 1)+p(x = 0|a = 1)p(y = 1|x = 0)

and by NSQD,

pG(y = 1|a = 0) =
µ− αpG(y = 1|a = 1)

1− α

Since we are free to choose what outcome of x to label as 1 or 0, there are

four cases to consider.

Case 1. Let Xa=1,x=1 be the set of lever variables that satisfy p11 = p10 = 1.

It follows that for every x ∈ Xa=1,x=1, p(x = 1|a = 1) = 1 while p(x = 0|a =
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1) = 0. Hence,

max
x∈Xa=1,x=1

pG(y = 1|a = 1) = max
x∈Xa=1,x=1

p(y = 1|x = 1)

and

max
x∈Xa=1,x=1

pG(y = 1|a = 0) =
µ− αminx∈Xa=1,x=1 pG(y = 1|x = 1)

1− α

where

p(y = 1|x = 1) =
αµ+ (1− α)µp01

αµ+ (1− α)µp01 + α(1− µ) + (1− α)(1− µ)p00

The R.H.S. of this equation is maximized when p01 = 1 and p00 = 0, and it

is minimized when p01 = 0 and p00 = 1. Therefore,

max
x∈Xa=1,x=1

pG(y = 1|a = 1) =
µ

µ+ α(1− µ)

where this maximum is attained by p11 = p10 = p01 = 1 and p00 = 0 (which

is equivalent to a lever variable defined as x = y + a(1− y), while

max
x∈Xa=1,x=1

pG(y = 1|a = 0) =
µ− α αµ

α+(1−α)(1−µ)

1− α =
µ(α + 1− µ)

1− µ(1− α)

where this maximum is attained by p11 = p10 = p00 = 1 and p01 = 0 (which

is equivalent to a lever variable defined as x = a+ (1− a)(1− y)).

Case 2. Let Xa=0,x=0 be the set of lever variables that satisfy p01 = p00 = 0.

Hence,

max
x∈Xa=0,x=0

pG(y = 1|a = 0) = max
x∈Xa=0,x=0

p(y = 1|x = 0)

and by NSQD,

max
x∈Xa=0,x=0

pG(y = 1|a = 1) =
µ− (1− α) minx∈Xa=0,x=0 p(y = 1|x = 0)

α
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where

p(y = 1|x = 0) =
αµ(1− p11) + (1− α)µ

αµ(1− p11) + (1− α)µ+ α(1− µ)(1− p10) + (1− α)(1− µ)

=
1

1 + α(1−µ)(1−p10)+(1−α)(1−µ)
αµ(1−p11)+(1−α)µ

Since the R.H.S. of this equation decreases in p11 and increases in p10 we

have that

max
x∈Xa=0,x=0

pG(y = 1|a = 0) =
µ

µ+ (1− α)(1− µ)

which is attained by p01 = p00 = p11 = 0 and p10 = 1 (which is equivalent to

a lever variable x = a(1− y)), while

max
x∈Xa=0,x=0

pG(y = 1|a = 1) =
µ− (1− α) (1−α)µ

(1−α)µ+(1−µ)

α
=
µ(2− α− µ)

1− αµ

which is attained by p01 = p00 = p10 = 0 and p11 = 1 (which is equivalent to

a lever variable x = ay).

Case 3. Let Xy=1,x=1 be the set of lever variables that satisfy p01 = p11 = 1.

Hence,

max
x∈Xy=1,x=1

pG(y = 1|a = 1) = max
x∈Xy=1,x=1

p(x = 1|a = 1)p(y = 1|x = 1)

and by NSQD,

max
x∈Xa=0,x=0

pG(y = 1|a = 0) =
µ− αminx∈Xy=1,x=1 p(x = 1|a = 1)p(y = 1|x = 1)

1− α

where for x ∈ Xy=1,x=1,

p(x = 1|a = 1)p(y = 1|x = 1) = (µ+(1−µ)p10)·
µ

µ+ α(1− µ)p10 + (1− α)(1− µ)p00

Since the R.H.S. of this equation is increasing in p10 and decreasing in p00 it

follows that

max
x∈Xy=1,x=1

pG(y = 1|a = 1) =
µ

µ+ α(1− µ)
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which is attained by p01 = p11 = p10 = 1 and p00 = 0 (which is equivalent to

a lever variable x = y + a(1− y)) whereas,

min
x∈Xy=1,x=1

pG(y = 1|a = 1) =
µ2

µ+ (1− α)(1− µ)

which is attained by p01 = p11 = p00 = 1 and p10 = 0 (which is equivalent to

a lever variable x = y + (1− y)(1− a)) such that

max
x∈Xa=0,x=0

pG(y = 1|a = 0) =
µ

µ+ (1− α)(1− µ)

Case 4. Let Xy=0,x=0 be the set of lever variables that satisfy p00 = p10 = 0.

Maximizing pG(y = 1|a = 1) is equivalent to minimizing 1−pG(y = 0|a = 1).

Since p(y = 0|x = 1) = 0 it follows that

pG(y = 0|a = 1) = p(x = 0|a = 1)p(y = 0|x = 0)

where

p(x = 0|a = 1) = µ(1− p11) + (1− µ) = 1− µp11

and

p(y = 0|x = 0) =
1− µ

1− µ+ αµ(1− p11) + (1− α)µ(1− p01)
=

1− µ
1− µ(αp11 + (1− α)p01)

Hence, we want to find p11 and p01 that minimize

(1− µ)(1− µp11)
1− µ(αp11 + (1− α)p01)

This expression increases in p01 and decreases in p11. Therefore,

max
x∈Xy=0,x=0

pG(y = 1|a = 1) = 1− (1− µ)2

1− αµ =
µ(2− α− µ)

1− αµ

which is attained by p10 = p00 = p01 = 0 and p11 = 1 (which in turn is

equivalent to a lever variable x = ay)
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Similarly,

max
x∈Xy=0,x=0

pG(y = 1|a = 0) = 1− min
x∈Xy=0,x=0

pG(y = 0|a = 0)

where pG(y = 0|a = 0) is equal to

p(x = 0|a = 0)p(y = 0|x = 0) =
(1− µ)[(1− µ) + µ(1− p01)]

(1− µ) + (1− α)µ(1− p01) + αµ(1− p11)

Since the R.H.S. of this expression decreases in p01 and increases in p11, we

have that

max
x∈Xy=0,x=0

pG(y = 1|a = 0) = 1− (1− µ)2

1− µ(1− α)
=
µ(1 + α− µ)

1− µ(1− α)

which is attained by p10 = p00 = p11 = 0 and p01 = 1 (which is equivalent to

a lever narrative x = y(1− a)).

From the above four cases we obtain two candidate lever variables for

maximizing pG(y = 1|a = 1): x = ay and x = y + a(1− y). The latter leads

to a higher expected anticipatory payoff if and only if

µ

µ+ α(1− µ)
>
µ(2− α− µ)

1− αµ

which holds if and only if µ < 1 − α. Similarly, we obtain two candidate

lever variables for maximizing pG(y = 1|a = 0) : x = y(1 − a) and x =

y + (1− y)(1− a). The latter leads to a higher expected anticipatory payoff

if and only if
µ

µ+ (1− α)(1− µ)
>
µ(1 + α− µ)

1− µ(1− α)

which holds if and only if µ < α.
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