A Model of Competing Narratives: Online
Appendix

Kfir Eliaz and Ran Spiegler

July 23, 2020

This appendix contains proofs omitted from the main file.

Proof of Proposition 1

Consider an auxiliary two-player game. Player 1’s strategy space is D, and
« denotes an element in this space. Player 2’s strategy space is A(G x D),
and o denotes an element in this space. The payoff of player 1 from the
strategy profile (o, o) is —[a — Y7, ;0(G, d)d]?. The payoff of player 2 from
(v, 0) is equal to ZG’dJ(G,d)ﬁ(G,d; a), where U(G,d;a) = U(G, d; ) if
V(G, a; ) = p and ﬁ(G, d; &) = —oo otherwise.

Note that } . ;0(G,d)d = a(o) by definition. Therefore, when player
1 chooses a to best-reply to o, we have @ = «(0). Non-nullness ensures
that G includes a DAG G* that induces V (G, a;a) = p. It follows that
when player 2 chooses ¢ to best-reply to «, it maximizes U(G, d; ) subject
to V(G, a; ) = p. Therefore, a Nash equilibrium in this auxiliary game is
equivalent to our notion of equilibrium.

Our objective is thus to establish existence of a Nash equilibrium («, o)
in this auxiliary game. Since pg is a continuous function of «, so is U. In
addition, the strategy spaces and payoff functions of the two players in the
auxiliary game satisfy standard conditions for the existence of Nash equilib-

rium. W



Proof of Step 2 in the proof of Proposition 4
Let G be the lever DAG ¢ — x — y. Denote p,, = p(x =1 | a,y). Our
objective is to find the maximal values for pg(y = 1| a = 1) and pe(y =
1 | a = 0) subject to the constraint that either p,«1 = p«o € {0,1} for some
a*, or pry» = poy+ € {0,1} for some y*. We use the shorthand notation
a=ao).

Recall that

pely=1a=1)=p(ex =1la=1)p(y =1z = 1)+p(x =0la = 1)p(y = 1|z =
and by NSQD,

p—apg(y =1la=1)
l—«

pa(y =1la=0) =

Since we are free to choose what outcome of x to label as 1 or 0, there are

four cases to consider.

Case 1. Let X,—; ;=1 be the set of lever variables that satisfy p;; = pi1p = 1.
It follows that for every x € X,—1 ,—1, p(x = 1|a = 1) = 1 while p(z = 0]a =
1) = 0. Hence,

max pg(y = lla=1)= max py=1lz=1)

r€Xq=1,2=1 T€Xq=1,2=1

p— QMmilgex, pa(y =1z =1)

max  paly = 1la=0)=

r€Xq=1,z=1 11—«
where
ap+ (1 —a)upor
ply=1lr=1) = 1=o)

ap+ (1= a)upor + a(l — p) + (1 — a)(1 = p)poo

The R.H.S. of this equation is maximized when pg; = 1 and pgo = 0, and it

is minimized when pg; = 0 and pgy = 1. Therefore,

o
ma. =lla=1)=——7—7—
xEXazl},(zzlpG(y | ) w4 a(l — pw)

where this maximum is attained by p;; = p1o = po1 = 1 and pgo = 0 (which



is equivalent to a lever variable defined as © = y + a(1 — y), while

Ho g Mot l—p
xe)lgjffwzlpc(y la=0) -« 1—p(l—a)

where this maximum is attained by p1; = pi1o = poo = 1 and pg; = 0 (which

is equivalent to a lever variable defined as = = a + (1 — a)(1 — y)).

Case 2. Let X,—¢ - be the set of lever variables that satisfy po; = poo = 0.
Hence,

max pe(y=1a=0)= max p(y=1lz=0)

T€Xq=0,2=0 T€Xq=0,2=0

and by NSQD,

ey b (A —e)mingex, o, p(y = 1z = 0)
max pg(y=1la=1) =

xeXu.:O,z:O 0]

where

ap(l —pu) + (1 —a)u

Ply =1 =0) = ) T 0 e+ all — (1 —pu) + () — )

Since the R.H.S. of this equation decreases in p;; and increases in piy we
have that

1
cax pely=1a=0)= == A=y

which is attained by po; = poo = p11 = 0 and pjp = 1 (which is equivalent to
a lever variable x = a(1 — y)), while
(—o)p
p- (- )iy _ p2—a—p)

ma; =1lla=1) = =

which is attained by pg1 = poo = p1o = 0 and p;; = 1 (which is equivalent to

a lever variable x = ay).

Case 3. Let X,_; .1 be the set of lever variables that satisfy po; = p11 = 1.

Hence,

max pely=1la=1)= max plrz=1a=1ply=1z=1)

z€Xy=12=1 z€Xy=12=1
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By NSQD,

p— amingex, p(a: = 1‘@ = 1)]7(3/ - 1’.% = 1)
max pe(y=1la=0) = —
CEGXa:O,a::O 1 —

where for z € Xy ;—1,

L
pA+ a1 = p)pro + (1 — ) (1 — p)poo

p(z =1la=1)p(y =1z =1) = (u+(1—p)piwo)-

Since the R.H.S. of this equation is increasing in pip and decreasing in pgg it
follows that

I
max =lla=1)= ——F——
LB pely=ta=1) pt ol —p)

which is attained by pg1 = p11 = p1o = 1 and pgo = 0 (which is equivalent to
a lever variable © = y + a(1 — y)), whereas,
2

min  pe(y=1la=1)= .
;CEXy:Lzzl /,I, =+ (1 — O{)(l — M)

which is attained by poy = p11 = poo = 1 and p;o = 0 (which is equivalent to
a lever variable = y + (1 — y)(1 — a)) such that

—1la =0
semax  poly =1e=0)= = g

Case 4. Let X,—( .0 be the set of lever variables that satisfy poy = p1o = 0.
Maximizing pg(y = 1|a = 1) is equivalent to minimizing 1 —pg(y = 0la = 1).
Since p(y = 0|z = 1) = 0 it follows that

where



ple = Ofa=1)=p(l —pu)+ (1 —p)=1-ppn
1 —p
Py = Ol =0) = T T o) + (1= @i — pon)
1 —p
1 — p(apir + (1 — a)por)

Hence, we want to find p;; and py; that minimize

(1 —=p)(1 = ppr)
1 — plapiy + (1 — @)por)

This expression increases in pg; and decreases in pq1. Therefore,

(1—p)?  p2—a—p
xe)g,lfg,(z:o pG(y ‘G ) 1-— A 1-— ap

which is attained by p1g = poo = po1 = 0 and p;; = 1 (which in turn is
equivalent to a lever variable = = ay)

Similarly,

max pe(y=1la=0)=1— min pg(y =0/a=0)

2€Xy=0,2=0 2E€Xy=0,2=0
where
pa(y = 0la=0)=p(z =0la=0)p(y = 0[r =0)

(1= —p) + pd = por)]
(1—p)+ (T —a)u(l —por) + ap(l — pi1)

Since the R.H.S. of this expression decreases in pg; and increases in pqq, we
have that

(1—p)? p(l+oa—p)
xe)r(rﬁgizopg(y la=0) l—p(l—a) 1—p(l—a)

which is attained by pi1o = poo = p11 = 0 and pg; = 1 (which is equivalent to

a lever narrative z = y(1 — a)).



From the above four cases we obtain two candidate lever variables for
maximizing p(y = 1la = 1): © = ay and = = y + a(1 — y). The latter leads
to a higher expected anticipatory payoft if and only if

L L H2Z—a—p)
o+ a(l —p) 1 —ap

which holds if and only if 4 < 1 — «. Similarly, we obtain two candidate
lever variables for maximizing pe(y = 1lla = 0) : © = y(1 —a) and = =
y+ (1 —y)(1 — a). The latter leads to a higher expected anticipatory payoff

if and only if
p p(l+a —p)
pt+l—a)l—p) " 1—p(l-a)

which holds if and only if 1 < a.




