
Appendix I: Proof of Lemma 1
The proof will rely on the following claim.

Claim 1 Let n ≥ 3 and suppose that G is imperfect. Then, there ex-

ists k ∈ {3, ..., n} such that V arG(xk) �= 1 for almost all correlation sub-

matrices (ρij)i,j=1,...,k−1 (and therefore, for almost all correlation matrices

(ρij)i,j=1,...,n).

Proof. For notational convenience, list the variables x1, ..., xn such that

R(i) ⊆ {1, ..., i − 1} for every i. This is without loss of generality, because

as far as this claim is concerned, the variables x1 and xn do not have a fixed

meaning. Consider the lowest k for which R(k) is not a clique. This means

that there exist two nodes h, l ∈ R(k) that are unlinked in G, whereas for

every k′ < k and every h′, l′ ∈ R(k′), h′ and l′ are linked in G.

Our goal is to show that V arG(xk) �= 1 for almost all correlation subma-

trices (ρij)i,j=1,...,k−1. Since none of the variables xk+1, ..., xn appear in the

equations for x1, ..., xk, we can ignore them and treat xk as the terminal node

in G without loss of generality, such that G is defined over the nodes 1, ..., k,

and p is defined over the variables x1, ..., xk.

Let (ρ̂ij)i,j=1,...,k−1 denote the correlation matrix over x1, ..., xk−1 induced

by pG - i.e., ρ̂ij is the estimated correlation between xi and xj, whereas ρij

denotes their objective correlation. By assumption, the estimated marginals

of x1, ..., xk−1 are correct, hence ρ̂ii = 1 for all i = 1, ..., k − 1.

Furthermore, observe that in order to compute ρ̂ij over i, j = 1, ..., k −
1, we do not need to know the value of ρhl (i.e. the objective correla-

tion between xh and xl). To see why, note that (ρ̂ij)i,j=1,...,k−1 is induced

by (pG(x1, ..., xk−1)). Each of the terms in the factorization formula for

pG(x1, ..., xk−1) is of the form p(xi | xR(i)), i = 1, ..., k − 1. To compute

this conditional probability, we only need to know (ρjj′)j,j′∈{i}∪R(i). By the

definition of k, h and l, it is impossible for both h and l to be included in

{i} ∪ R(i). Therefore, we can compute (ρ̂ij)i,j=1,...,k−1 without knowing the

objective value of ρhl. We will make use of this observation toward the end

of this proof.
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The equation for xk is

xk =
∑

i∈R(k)

βikxi + εk (10)

Let β denote the vector (βik)i∈R(k). Let A denote the correlation sub-matrix

(ρij)i,j∈R(k) that fully characterizes the objective joint distribution (p(xR(k))).

Then, the objective variance of xk can be written as

V ar(xk) = 1 = βTAβ + σ2 (11)

where σ2 = V ar(εk).

In contrast, the estimated variance of xk, denoted V arG(xk), obeys the

equation

V arG(xk) = βTCβ + σ2 (12)

where C denotes the correlation sub-matrix (ρ̂ij)i,j∈R(k) that characterizes

(pG(xR(k))). In other words, the estimated variance of xk is produced by

replacing the objective joint distribution of xR(k) in the regression equation

for xk with its estimated distribution (induced by pG), without changing the

values of β and σ2.

The undistorted-marginals constraint requires V arG(xk) = 1. This im-

plies the equation

βTAβ = βTCβ (13)

We now wish to show that this equation fails for generic (ρij)i,j=1,...,k−1.

For any subsets B,B′ ⊂ {1, ..., k−1}, use ΣB×B′ to denote the submatrix

of (ρ̂ij)i,j=1,...,k−1 in which the selected set of rows is B and the selected set

of columns is B′. By assumption, h, l ∈ R(k) are unlinked. This means

that according to G, xh and xl are independent conditional on xM , where

M ⊂ {1, ..., k − 1} − {h, l}. Therefore, by Drton et al. (2008, p. 67),

Σ{h}×{l} = Σ{h}×MΣ−1M×MΣM×{l} (14)

Note that equation (14) is precisely where we use the assumption that G
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is imperfect. If G were perfect, then all nodes in R(k) would be linked

and therefore we would be unable to find a pair of nodes h, l ∈ R(k) that

necessarily satisfies (14).

The L.H.S of (14) is simply ρ̂hl. The R.H.S of (14) is induced by pG(x1, ..., xk−1).

As noted earlier, this distribution is pinned down by G and the entries in

(ρij)i,j=1,...,k−1 except for ρhl. That is, if we are not informed of ρhl but we are

informed of all the other entries in (ρij)i,j=1,...,k−1, we are able to pin down

the R.H.S of (14).

Now, when we draw the objective correlation submatrix (ρij)i,j=1,...,k−1 at

random, we can think of it as a two-stage lottery. In the first stage, all the

entries in this submatrix except ρhl are drawn. In the second stage, ρhl is

drawn. The only constraint in each stage of the lottery is that (ρij)i,j=1,...,k−1
has to be positive-semi-definite and have 1’s on the diagonal. Fix the outcome

of the first stage of this lottery. Then, it pins down the R.H.S of (14). In

the lottery’s second stage, there is (for a generic outcome of the lottery’s

first stage) a continuum of values that ρhl could take for which (ρij)i,j=1,...,k−1
will be positive-semi-definite. However, there is only value of ρhl that will

coincide with the value of ρ̂hl that is given by the equation (14). We have

thus established that A �= C for generic (ρij)i,j=1,...,k−1.

Recall once again that we can regards β as a parameter of p that is in-

dependent of A (and therefore of C as well), because A describes (p(xR(k)))

whereas β, σ2 characterize (p(xk | xR(k))). Then, since we can assume A �= C,

(13) is a non-tautological quadratic equation of β (because we can con-

struct examples of p that violate it). By Caron and Traynor (2005), it

has a measure-zero set of solutions β. We conclude that the constraint

V arG(xk) = 1 is violated by almost every (ρij).

By the claim, for every imperfect DAG G, the set of covariance matrices

(ρij) for which pG preserves the mean and variance of all individual variables

has measure zero. The set of imperfect DAGs over {1, ..., n} is finite, and

the finite union of measure-zero sets has measure zero as well. It follows that

for almost all (ρij), the property that pG preserves the mean and variance of

individual variables is violated unless G is perfect.
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Appendix II: Uniform Binary Variables
In this appendix, we consider the case in which each variable xi, i = 1, ..., n,

takes values in {−1, 1}, and the marginal distribution over each xi induced by

p is uniform. This can be viewed as a coarsening of an underlying Gaussian

distribution, such that xi records the sign of a Gaussian variable.

We do not have a complete analysis of our problem for this specification

of p, and focus on the chain model 1→ 2→ · · · → n. In Eliaz et al. (2019),

we provided a characterization of the maximal estimated correlation that

such a model can generate in a uniform-binary environment. The proof was

by induction on n. Here we give a constructive proof that emphasizes the

analogy with the Gaussian case. Our analysis is based on a few preliminary

observations.

Definition 2 A n × n matrix C is called “Binary Factorizable” (BF) if it

can be written as

C = lim
M→∞

1

M
AMAT

M

Where each AM is a n×M matrix whose elements are all ±1 and each row

of AM is zero mean.

Note that any BF matrix is symmetric, positive semi-definite, and has

ones on the diagonal. Note also that any covariance matrix of zero-mean

binary random variables must be BF, since we can define the matrix AM as

a sample covariance matrix, where the sample consists of M i.i.d draws from

the underlying distribution. The converse is also true: any BF matrix corre-

sponds to the covariance matrix of zero-mean binary random variables. This
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can be seen by defining a distribution over n binary variables by randomly

picking (with probability 1/M) one of the columns of AM .

Somewhat surprisingly, however, there exist symmetric, positive semi-

definite matrices which are not BF. For example, the reader may recall the

following correlation matrix from the example in the Introduction, where it

gave the maximal false correlation for n = 3 in the Gaussian environment:

C =

⎛
⎜⎝

1 b 0

b 1 b

0 b 1

⎞
⎟⎠

with b =
√

1/2. This matrix is not BF. As we will see below, the largest

value of b for which C is BF is 1
2
.

Proposition 2 Suppose all variables take values in {−1, 1} and the objec-

tive distribution p induces a uniform marginal over each variable. Let the

objective (Pearson) coefficient of correlation between x1 and xn, according to

p, is r. Then, the maximal estimated correlation that can be achieved by a

linear DAG G : 1→ 2→ · · · → n is given by:

ρ∗1n = max
ρij=ρji for all i,j

(ρij) is BF
ρii=1 for all i

ρ1n=r

n−1∏
i=1

ρi,i+1

Proof. The constraints are self-evident. We only need to show that for

a linear DAG defined over uniformly distributed binary variables, the esti-

mated correlation between x1 and xn is given by the product of the objective

pairwise correlations of adjacent variables (as in the Gaussian case). We

can show this by viewing pG(x1, ..., xn) = p(x1)p(x2 | x1) · · · p(xn | xn−1) as a

Markov chain. The conditional probability pG(xn | x1) is thus given by a ma-

trix product - specifically, the product of all the transition matrices defined

by p(xi+1 | xi). Since all variables are uniformly distributed, the transition

matrices are doubly stochastic, which means that they have the same eigen-

vectors. The top eigenvalue is always 1 and the second eigenvalue gives the
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correlation. Since all matrices have the same eigenvectors, the eigenvalues

just multiply.

Note that Proposition 2 is exactly the same as the intermediate result

we established at the beginning of Section 4.3 for the Gaussian environment.

The only difference is that we replace the requirement that ρ be positive

semi-definite with the requirement that ρ be BF. As mentioned above, the

set of BF matrices is smaller than the set of positive semi-definite matrices.

Therefore, we should expect a more stringent upper bound on the maximal

false correlation.

Proposition 3 Suppose all variables take values in {−1, 1} and the objective

distribution p induces a uniform marginal over each variable. Let the objec-

tive (Pearson) coefficient of correlation between x1 and xn, according to p be

equal to r. Then, the maximal estimated correlation that can be generated by

the DAG 1→ 2→ · · · → n is given by:

ρ∗1n =

(
1− 1

n− 1
(1− r)

)n−1
(15)

Proof. From Proposition 2, we know that the maximal estimated correlation

is obtained by multiplying elements in a BF correlation matrix (ρij) such that

ρ1n = r. For any n ×M matrix AM , let a
(M)
i denote its ith row. Then, we

can rewrite the estimated correlation induced by CM = 1
M
AMAT

M as:

n−1∏
i=1

1

M
a
(M)
i

Ta
(M)
i+1

As we discussed following the definition of BF matrices, the dot product

between the ith and jth rows of AM is proportional to the empirical correlation

of xi and xj in a sample consisting of M i.i.d draws from the underlying

distribution.

Given a matrix AM that gives an objective correlation of ρ1n = r, we can

always attempt to improve the estimated correlation by optimizing all other
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rows of the matrix a2, ..., an−1. This implies that for any M :

ρ∗1n ≤ max
a2,··· ,an−1∈{−1,1}M ,a1=a

(M)
1 ,an=a

(M)
n

n−1∏
i=1

1

M
aTi ai+1 (16)

This is an upper bound for two reasons. First, we are not enforcing the

constraint that the binary vectors ai are zero mean. Second, if C = 1
M
AMAT

M

for some finite M , then C is BF.

For binary vectors ai, aj ∈ {−1, 1}M , the dot product 1
M
aTi aj is a mono-

tone function of the proportion q of components for which the two vectors

agree: 1
M
aTi aj = 2q − 1. Thus, maximizing the dot product between two bi-

nary vectors is equivalent to minimizing the number of components on which

they disagree. This means that the R.H.S of (16) is a form of a shortest path

on a lattice: we are given two points in {−1, 1}M (a1 and an), and seek a

set of intermediate points on this lattice that are as close as possible to each

other. By analogy, in the third step of our proof for the Gaussian case, we

were also given two vectors in a high-dimensional space (an n-dimensional

unit sphere) and searched for a set of intermediate points on the sphere such

that the intermediate points are as close as possible to one another (in terms

of spherical distance).

To solve this “shortest path on a lattice” problem, we divide the M

indices into two disjoint groups: M1 indices k for which a1(k) = an(k) and

M−1 indices k for which a1(k) �= an(k). For any of the M1 indices for which

a1(k) = an(k) , setting ai(k) = a1(k) for all i can only increase the objective

function (since this can only increase the dot product between consecutive

vectors).

For the remaining M−1 indices k for which a1(k) �= an(k), denote by mi

the number of indices k for which ai(k) = a1(k) and ai(k) �= an(k). Assuming

mi > mj, the dot product between ai and aj can be written as follows:

aTi aj = M − 2(mi −mj)
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This enables us to rewrite (16) as:

ρ∗1n ≤ max
m2,··· ,mn−1

n−1∏
i=1

1

M
(M − 2(mi−1 −mi)) (17)

The R.H.S. of (17) should be maximized subject to the constraint that

mi ∈ {0, 1, · · ·M−1}, but we can get an upper bound by maximizing over

real-valued mi.

Taking the logarithm of the R.H.S of (17) and differentiating with respect

to mi yields that at an optimum, mi should be linearly spaced between m1

and mn:

mi −mi+1 =
M−1
n− 1

Thus, the optimal shortest path is a set of binary vectors whose components

agree with x1 and xn whenever they coincide, and the rest of the indices

agree with x1 with a fraction that decreases linearly with i.

Now, for large M , M−1/M converges to the probability that x1 �= xn,

namely 1−r
2
, such that

1

M
aTi ai+1 →

(
1− 1

n− 1
(1− r)

)

Since there are n−1 such dot products, we take their product, thus obtaining

the R.H.S of (15).

To show that the upper bound is tight, given two uniform binary random

variables x1, xn that satisfy E(x1xn) = r, consider a set of variables xi, whose

distribution conditional on x1, xn is defined as follows:

• If x1 = xn, then xi = x1 = xn.

• If x1 �= xn, then xi = x1 with probability 1 − i
n
and xi = xn with

probability i
n
.

By construction, a vector of M random samples from xi and xi−1 will gen-

erate a normalized dot product 1
M
aTi ai+1 that converges to

(
1− 1

n−1(1− r)
)

when M →∞, thus attaining the upper bound.
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It is also worth noting that in Eliaz et al. (2019), we implement the upper

bound by taking the n variables to be the sign of the Gaussian variables we

used in the implementation of the upper bound of our the main theorem.

Let us illustrate the upper bound. For n = 3 and r = 0, the maximal

estimated correlation between x1 and x3 using the chain model 1→ 2→ 3 is
1
4
(compared with the value 1

2
in the Gaussian case). Finally, for any r, the

maximal estimated correlation converges to er−1 as n→∞ (compared with

1 in the Gaussian case).
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